Abstract:
Disclosed are methods and apparatus for inspecting and processing semiconductor wafers. The system includes an edge detection system for receiving each wafer that is to undergo a photolithography process. The edge detection system comprises an illumination channel for directing one or more illumination beams towards a side, top, and bottom edge portion that are within a border region of the wafer. The edge detection system also includes a collection module for collecting and sensing output radiation that is scattered or reflected from the edge portion of the wafer and an analyzer module for locating defects in the edge portion and determining whether each wafer is within specification based on the sensed output radiation for such wafer. The photolithography system is configured for receiving from the edge detection system each wafer that has been found to be within specification. The edge detection system is coupled in-line with the photolithography system.
Abstract:
Optical inspection methods and apparatus for high-resolution photomasks using only a test image. A filter is applied to an image signal received from radiation that is transmitted by or reflected from a photomask having a test image. The filter may be implemented using programmed control to adjust and control filter conditions, illumination conditions, and magnification conditions.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An inspection tool for detecting electromagnetic waveforms is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.
Abstract:
Disclosed are methods and apparatus for inspecting and processing semiconductor wafers. The system includes an edge detection system for receiving each wafer that is to undergo a photolithography process. The edge detection system comprises an illumination channel for directing one or more illumination beams towards a side, top, and bottom edge portion that are within a border region of the wafer. The edge detection system also includes a collection module for collecting and sensing output radiation that is scattered or reflected from the edge portion of the wafer and an analyzer module for locating defects in the edge portion and determining whether each wafer is within specification based on the sensed output radiation for such wafer. The photolithography system is configured for receiving from the edge detection system each wafer that has been found to be within specification. The edge detection system is coupled in-line with the photolithography system.
Abstract:
The invention relates to an image acquisition system and an image acquisition method, as well as to an inspection system having at least one such image acquisition system. A projector projects a pattern on a surface of a sample, a camera records light intensity information from within at least two detection fields defined by the camera on the surface of the sample. A relative motion between the sample on the one hand and the camera and projector on the other hand is generated. From the acquired at least one image a height profile of the surface of the sample may be inferred. The pattern may comprise a number of sub-patterns related to each other by a phase shift. Alternatively, the pattern may be a fringe pattern.
Abstract:
The invention relates to an image acquisition system and an image acquisition method, as well as to an inspection system having at least one such image acquisition system. A projector projects a pattern on a surface of a sample, a camera records light intensity information from within at least two detection fields defined by the camera on the surface of the sample. A relative motion between the sample on the one hand and the camera and projector on the other hand is generated. From the acquired at least one image a height profile of the surface of the sample may be inferred. The pattern may comprise a number of sub-patterns related to each other by a phase shift. Alternatively, the pattern may be a fringe pattern.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An optical inspection tool is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An inspection tool for detecting electromagnetic waveforms is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.
Abstract:
Optical inspection methods and apparatus for high-resolution photomasks using only a test image. A filter is applied to an image signal received from radiation that is transmitted by or reflected from a photomask having a test image. The filter may be implemented using programmed control to adjust and control filter conditions, illumination conditions, and magnification conditions.
Abstract:
Disclosed are methods and apparatus for inspecting an extreme ultraviolet (EUV) reticle is disclosed. An optical inspection tool is used to obtain a phase defect map for the EUV reticle before a pattern is formed on the EUV reticle, and the phase defect map identifies a position of each phase defect on the EUV reticle. After the pattern is formed on the EUV reticle, a charged particle tool is used to obtain an image of each reticle portion that is proximate to each position of each phase defect as identified in the phase defect map. The phase defect map and one or images of each reticle portion that is proximate to each position of each phase defect are displayed or stored so as to facilitate analysis of whether to repair or discard the EUV reticle.