Abstract:
There is described a substrate (S) for security documents, such as banknotes, comprising one or more paper layers (11, 12) and a polymer layer (20) which is made to adhere to a side of at least one of the paper layers (11, 12), which polymer layer (20) is substantially transparent in at least one region of the substrate (S) which is not covered by the paper layer or layers (11, 12) so as to form a substantially transparent window (W) in the substrate (S) which is formed and closed by the polymer layer (20). The polymer layer (20) exhibits in the region of the window (W) a thickness (T) which is greater than a thickness (t) of the polymer layer (20) outside of the region of the window (W). The thickness (T) of the polymer layer (20) in the region of the window (W) is substantially equal to the added thickness of the paper layer or layers (11, 12) and of the polymer layer (20) outside of the region of the (W) so that the substrate (S) exhibits a substantially uniform and constant thickness (T). The substrate (S) further comprises a micro-optical structure (30), in particular a lens structure, which is disposed in the region of the window (W) on at least one side of the polymer layer (20).
Abstract:
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination
Abstract:
There is described a method of creating a transparent window (W*) in a security, especially paper, substrate (1) for security printing applications, the method comprising the steps of (i) providing a security substrate (1), (ii) forming an opening (10*) into and through the security substrate (1), and (iii) filling the opening (10*) with transparent material (2) thereby forming the transparent window (W*). The filling of the opening (10*) with the transparent material (2) is carried out in a state where the opening (10*) is open on both sides of the security substrate (1) and extends through the security substrate (1), the filling of the opening (10*) including (10 the application of a first side (I) of the security substrate (1) against a supporting surface (21A) of a supporting member (20′, 21) in such a way as to block one side of the opening (10*), while the transparent material (2) is applied inside the opening (10*) from the other side (II) of the security substrate (1). Advantageously, the method further comprises the step of forming a field of lenses (L) on one side of the transparent window (W*), in particular by replicating the field of lenses (L) directly into the transparent material (2) filling the opening (10*). Also described is a suitable device designed to fill the opening (10*) with the transparent material (2).
Abstract:
There is described an intaglio printing press (1; 1 *) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1 *) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
Abstract:
A method of authenticating security documents and a mobile device, especially a smartphone, programmed to carry out the method, based on an analysis of features which are produced by intaglio printing, which analysis involves a decomposition of sample images of a candidate document to be authenticated based on Wavelets, each sample image being digitally processed by performing a Wavelet transform of the sample image in order to derive a set of classification features. The method is based on an adaptive approach, which includes the following steps: —prior to carrying out the Wavelet transform, defining a categorization map containing local information about different intaglio line structures that are found on the security documents; —carrying out a Wavelet selection amongst a pool of Wavelet types based on the categorization map; and —performing the Wavelet transform of the sample image on the basis of the selected Wavelet.
Abstract:
There is described a combined printing press (10; 10*) for the production of security documents, in particular banknotes, comprising a screen printing group (2; 2*) and an intaglio printing group (3) adapted to process substrates in the form of individual sheets or successive portions of a continuous web. The screen printing group (2; 2*) is located upstream of the intaglio printing group (3) and comprises at least one screen printing unit (20; 20*) designed to print a pattern of optically-variable ink onto one side of the substrates, which optically-variable ink contains flakes that can be oriented by means of a magnetic field. The screen printing group (2; 2*) further comprises a magnetic unit (24; 24*) located downstream of the screen printing unit (20; 20*), which magnetic unit is designed to magnetically induce an optically-variable effect in the pattern of optically-variable ink applied by the screen printing unit (20; 20*). The screen printing group (2; 2*) further comprises at least one drying/curing unit (25, 28; 25*, 28*) designed to dry/cure the pattern of optically-variable ink in which the optically-variable effect has been induced by the magnetic unit (24), prior to transfer of the substrates to the intaglio printing group (3).
Abstract:
There is described a recto-verso printing press (100*) adapted to carry out simultaneous recto-verso printing of sheets, the printing press (100*) comprising a main printing group (5, 6, 15, 16, 25, 26) with first and second printing cylinders (5, 6) cooperating with one another to form a first printing nip between the first and second printing cylinders (5, 6) where first and second sides of sheets are simultaneously printed, the first printing cylinder (5) acting as a sheet conveying cylinder of the main printing group (5, 6, 15, 16, 25, 26). The printing press (100*) further comprises an additional printing group (7, 8, 17, 18, 27, 28) with third and fourth printing cylinders (7, 8) cooperating with one another to form a second printing nip between the third and fourth printing cylinders (7, 8) where the first and second sides of the sheets are simultaneously printed, the third printing cylinder (7) acting as a sheet conveying cylinder of the additional printing group (7, 8, 17, 18, 27, 28). The main printing group (5, 6, 15, 16, 25, 26) and the additional printing group (7, 8, 7, 18, 27, 28) are coupled to one another by means of an intermediate sheet conveying system comprising one or more sheet-transfer cylinders (10, 10′, 10″) interposed between the first and third printing cylinders (5, 7).
Abstract:
There is described a combined printing press (10) for the production of security documents, in particular banknotes, comprising a screen printing group (3) and a numbering group (4) adapted to process printed substrates in the form of individual sheets or successive portions of a continuous web. The screen printing group (3) is located upstream of the numbering group (4) and comprises at least one screen printing unit (32-33) designed to print a pattern of optically-variable ink, which optically-variable ink contains flakes that can be oriented by means of a magnetic field. The screen printing group further comprises a magnetic unit (36) located downstream of the screen printing unit (32-33), which magnetic unit (36) is designed to magnetically induce an optically-variable effect in the pattern of optically-variable ink applied by the screen printing unit (32-33) prior to drying/curing of the optically-variable ink. The screen printing group (3) further comprises at least one drying/curing unit (37) designed to dry/cure the pattern of optically-variable ink in which the optically-variable effect has been induced by the magnetic unit (36), prior to transfer of the printed substrates to the numbering group (4).
Abstract:
There is described a multicolour letterpress printing press, in particular a numbering press, comprising a printing group (50) with at least a first letterpress (e.g. numbering) cylinder (51) and a second letterpress cylinder (52) which are inked by an associated inking system (60, 71, 72, 81, 81a, 81b, 82, 82a, 82b). The inking system (60, 71, 72, 81, 81a, 81b, 82, 82a, 82b) comprises (i) a first inking device (81) supplying ink to a first chablon cylinder (71), (ii) at least a second inking device (82) supplying ink to a second chablon cylinder (72), and (iii) an ink-collecting cylinder (60) contacting the first and second chablon cylinders (71, 72) and the first and second letterpress cylinders (51, 52). The ink-collecting cylinder (60) collects a first ink pattern (A, D) from the first chablon cylinder (71) and a second ink pattern (B, C) from the second chablon cylinder (72). As a result, a first multicolour pattern of inks (A-D) is formed on the ink-collecting cylinder (60), which first multicolour pattern of inks (A-D) is transferred onto the first letterpress cylinder (51). The ink-collecting cylinder (60) further collects a third ink pattern (A, D) from the first chablon cylinder (71) and a fourth ink pattern (B, C) from the second chablon cylinder (72), thereby forming a second multicolour pattern of inks (A ″D) on the ink-collecting cylinder (60), which second multicolour pattern of inks (A ″D) is transferred onto the second letterpress cylinder (52).
Abstract:
There is described a method of creating a transparent polymer window (W) with a field of lenses (L) in a security paper substrate (1), the method comprising the steps of (i) providing a security paper substrate (1), (ii) forming an opening (10) into the security paper substrate (1), (iii) laminating a transparent film (5; 5*) onto a first side (I) of the security paper substrate (1) in such a way as to close the opening (10) at one end, and (iv) filling the opening (10) with transparent polymer material (2). In one embodiment, the transparent film (5) comprises a field of lenses (L) and is laminated onto the first side (I) of the security paper substrate (1) in such a way as to form lenses (L) on the first side (I) of the security paper substrate (1) in register with the opening (10). In another embodiment, the field of lenses (L) is replicated into the transparent polymer material (2) applied in the opening (10) in such a way as to form lenses (L) on a second side (II) of the security paper substrate (1), opposite to the first side (I), in register with the opening (10). Also described is a device designed to fill the opening (10) formed into the security paper substrate (1) with the transparent polymer material (2) and a processing machine comprising the same.