Abstract:
According to one embodiment, a magnetic recording and reproducing device includes a magnetic recording medium, a recording unit, and a reproducing unit. The magnetic recording medium includes a first track including first and second sub-tracks extending in a first direction. The second sub-track is arranged with the first sub-track in a second direction intersecting the first direction. The recording unit records information in the first and second sub-tracks. The reproducing unit reproduces the information recorded in the first and second sub-tracks while opposing the first, second sub-tracks, and a boundary between the first and second sub-tracks. The first sub-track includes first magnetic recording components including first and second components. The second sub-track includes second magnetic recording components including third and fourth components. A first recording symbol is formed of the first and third components. A second recording symbol is formed of the second and fourth components.
Abstract:
A blood-pressure sensor includes a substrate, a first electrode, a magnetization fixed layer, a nonmagnetic layer, a magnetization free layer, and a second electrode. The substrate is bent to generate a tensile stress at least in a first direction. The first electrode is provided on the substrate. The magnetization fixed layer has magnetization to be fixed in a second direction, and is provided on the substrate. The nonmagnetic layer is provided on the magnetization fixed layer. The magnetization free layer has a magnetization direction which is different from the first direction and from a direction perpendicular to the first direction. The second electrode is provided on the magnetization free layer.
Abstract:
A magnetic recording head includes a main magnetic pole in which a recording magnetic field is generated, a write shield magnetic pole disposed alongside the main magnetic pole with a gap therebetween, a spin torque oscillator disposed within the gap and configured to generate a microwave, an anti-ferromagnetic layer disposed within the gap between the write shield magnetic pole and the spin torque oscillator, and a non-magnetic metal layer disposed within the gap between the spin torque oscillator and the anti-ferromagnetic layer.
Abstract:
A magnetoresistive element according to an embodiment includes: a magnetoresistance effect film including: a first magnetic film; a second magnetic film; and an intermediate film of a nonmagnetic material disposed between the first magnetic film and the second magnetic film, at least one of the first magnetic film and the second magnetic film being formed of a material expressed as AxB1-x(65 at %≦x≦85 at %) where A is an alloy containing Co and at least one element selected from Fe and Mn, and B is an alloy containing Si or Ge, a Si concentration in the at least one of the first magnetic film and the second magnetic film decreasing and a Ge concentration increasing as a distance from the intermediate film increases.
Abstract:
According to one embodiment, a magnetoresistance effect element includes a first shield, a second shield, a stacked unit, and a hard bias unit. The stacked unit includes a first magnetic layer provided between the first shield and the second shield, a second magnetic layer provided between the first magnetic layer and the second shield, and an intermediate layer provided between the and second magnetic layers. The hard bias unit is provided between the first shield and the second shield to be arranged with the stacked unit. A crystal orientation plane of the first magnetic layer in a film surface perpendicular direction is a cubic (110) plane. The first magnetic layer includes a first stacked body including a first Fe layer and a first Co layer stacked along the first direction, and a first Heusler alloy layer stacked with the first stacked body along the first direction.
Abstract:
According to one embodiment, a magnetic recording head includes a main magnetic pole, an auxiliary magnetic pole, and a spin torque oscillator formed between them. The spin torque oscillator includes a main oscillation layer and spin sink layer as an oscillation layer. The spin sink layer contains one of iron and cobalt, and at least one element selected from the group consisting of platinum, palladium, ruthenium, tantalum, chromium, terbium, gadolinium, europium, dysprosium, and samarium.
Abstract:
According to one embodiment, a magnetic recording head includes a magnetic pole, a stacked body, and a first non-magnetic layer. The stacked body includes a first magnetic layer, a second magnetic layer provided between the first magnetic layer and the magnetic pole, and a non-magnetic intermediate layer provided between the first magnetic layer and the second magnetic layer. The first non-magnetic layer is provided between the second magnetic layer and the magnetic pole, and contacts the magnetic pole and the second magnetic layer. The first magnetic layer has a first thickness and a first saturation magnetic flux density. The second magnetic layer has a second thickness and a second saturation magnetic flux density. A second product of the second thickness and the second saturation magnetic flux density is larger than a first product of the first thickness and the first saturation magnetic flux density.
Abstract:
A magnetic head according to an embodiment includes a first magnetic shield and a second magnetic shield that are opposed to each other, and a magnetoresistive film arranged between the first magnetic shield and the second magnetic shield, and including a first magnetic layer including a first metal layer that contains 90 at. % or more of Fe and a first Heusler alloy layer, a second magnetic layer arranged on a side of the first Heusler alloy layer opposite from the first magnetic layer, and an intermediate layer arranged between the first Heusler alloy layer and the second magnetic layer.
Abstract:
A strain sensor element comprises a laminated film which has a magnetic free layer, a spacer layer, and a magnetic reference layer. The free layer has a variable magnetization direction and a out-of-plane magnetization direction. The reference layer has a variable magnetization direction which is pinned more strongly than the magnetization of the free layer. The spacer layer provided between the free layer and the reference layer. A pair of electrodes is provided with a plane of the laminated film. A substrate is provided with either of the pair electrodes and can be strained. The rotation angle of the magnetization of the free layer is different from the rotation angle of the magnetization of the reference layer when the substrate is distorted. Electrical resistance is changed depending on the magnetization angle between the free layer and the reference layer, which allows the element to operate as a strain sensor.
Abstract:
According to one embodiment, a method of manufacturing a magnetoresistive element includes a layered structure and a pair of electrodes, the layered structure including a cap layer, a magnetization pinned layer, a magnetization free layer, a spacer layer and a functional layer provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer and including an oxide, the method including forming a film including a base material of the functional layer, performing an oxidation treatment on the film using a gas containing oxygen in a form of at least one selected from the group consisting of molecule, ion, plasma and radical, and performing a reduction treatment using a reducing gas on the film after the oxidation treatment.