Abstract:
Disclosed is a method for forming an insulating layer, comprising coating a substrate with an insulating film material to form a coated film, the insulating film material containing at least first and second polymers differing from each other in average molecular weight, and heating the coated film while irradiating the coated film with an electron beam.
Abstract:
A semiconductor device having a plurality of wiring layers includes: a first insulating film firstly formed in layer; a first wiring layer having a plurality of wirings, formed on the first insulating film; a second wiring layer having a plurality of wirings, formed on or over the first wiring layer; and a second insulating film provided on the first insulating film formed as having a plane surface and the first wiring layer, and formed between adjacent wirings of the second wiring layer, located under the second wiring layer but on the first insulating film and the first wiring layer, at least a part of the second insulating film existing between the first and second wiring layers having a relative dielectric constant lower than a relative dielectric constant of the first insulating film. A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the groves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide groves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the groves to be filled.
Abstract:
A method of forming an insulating film which includes the steps of: dissolving in a solvent a first and second polymer which each comprise methylpolysiloxane as the main component and one of which has a weight average molecular weight at least 10 times that of the other to thereby prepare a chemical solution; applying the chemical solution to a semiconductor substrate to form a coating film; and heat-treating the coating film to thereby form an organosilicon oxide film. The weight-average molecular weight of the first polymer is preferably at least 100 times that of the second polymer. Thus, an insulating organosilicon oxide film having a low dielectric constant and high cracking resistance is formed from a coating fluid.
Abstract:
A method of manufacturing a semiconductor device according to an aspect of the present invention comprises forming a low dielectric constant insulating film having a siloxane bond as main skeleton on a semiconductor substrate, causing a surfactant to permeate the low dielectric constant insulating film, and conducting a predetermined step on the low dielectric constant insulating film permeated with the surfactant in a state adapted to be exposed to water.
Abstract:
A method for manufacturing a semiconductor device, comprising controlling a humidity in an atmosphere around a low dielectric constant insulating film at 30% or less, during a processing period and a transfer period between processing equipments, in which at least a part of said low dielectric constant insulating film is exposed to the atmosphere
Abstract:
Disclosed is a method for manufacturing a semiconductor device, comprising forming a low dielectric constant insulating film containing Si atoms over a semiconductor substrate, heating the low dielectric constant insulating film while irradiating the low dielectric constant insulating film with an electron beam, and exposing the low dielectric constant insulating film during or after the heating to a gas promoting the bond formation of the Si atoms.