Abstract:
The disclosure herein discloses L. plantarum CCFM1019, fermented foods thereof, and application thereof in preparation of a medicine for promoting excretion of plasticizers and metabolites thereof from the body. The L. plantarum CCFM1019 not only is significantly better than the intestinal resident bacteria E. coli and E. faecalis in terms of the effect of promoting the excretion of DEHP and MEHP, but also is better than the commercial strain L. rhamnosus LGG. Therefore, the L. plantarum CCFM1019 of the disclosure can be used as an effective means to prevent and alleviate body damage caused by DEHP and MEHP, and has no toxic side effects of drugs. L. plantarum CCFM1019 can be used to prepare pharmaceutical compositions and fermented foods for alleviating and preventing the toxicity of DEHP and metabolites thereof, and has a very broad application prospect.
Abstract:
A method of preparing degradable and environment responsive composite microgels, belonging to polymer material synthesis and biomaterial technology fields. Firstly, a copolymer of L-malic acid and 6-hydroxyhexanoate is prepared; then, N,N,N′,N′-tetramethyl cystamine is prepared. The copolymer and N,N,N′,N′-tetramethyl cystamine are mixed in an organic solvent to form a mixed solution which is added into excess distilled water to produce composite microgels. The microgels have advantages of mild preparing conditions, fast reaction speed without catalysts, no impurity remained, and controllable degradation rate. The microgels can load anticancer drug doxorubicin hydrochloride, showing environment responsive controlled release due to introduction of carboxyl groups and disulfide bonds.
Abstract:
An anti-oxidative Lactobacillus rhamnosus CCFM1107 can relieve chronic alcoholic liver injury, and L. rhamnosus CCFM1107 can be used in preparing dairy products as starter culture. The dairy products of this invention include milk, milk powder, milk capsules or fermented milk containing L. rhamnosus CCFM1107. It has strong abilities of anti-oxidation, scavenging diphenyl picrylhydrazyl (DPPH) radical and hydroxyl radical, inhibiting lipid peroxidation, tolerating cholate, chlorine sodium and pH, and can improve liver function and antioxidative index, lower serum endotoxin level and regulate intestinal flora distribution, thus effectively relieving alcoholic liver injury of mice.
Abstract:
An anti-oxidative Lactobacillus rhamnosus CCFM1107 can relieve chronic alcoholic liver injury, and L. rhamnosus CCFM1107 can be used in preparing dairy products as starter culture. The dairy products of this invention include milk, milk powder, milk capsules or fermented milk containing L. rhamnosus CCFM1107. It has strong abilities of anti-oxidation, scavenging diphenyl picrylhydrazyl (DPPH) radical and hydroxyl radical, inhibiting lipid peroxidation, tolerating cholate, chlorine sodium and pH, and can improve liver function and antioxidative index, lower serum endotoxin level and regulate intestinal flora distribution, thus effectively relieving alcoholic liver injury of mice.
Abstract:
The present invention relates to the technical field of microbes, in particular to a Lactobacillus plantarum which can significantly inhibit the occurrence of colorectal cancer, and its use thereof. The Lactobacillus plantarum strain CCFM164 has a deposit number CGMCC No. 14520, which has a good tolerance to gastric acid and bile salts, significantly alleviate the level of colorectal inflammation in colorectal cancer model mice, and can reduce the number of tumors in the colon and rectum of the model mice by regulating the Notch1, Notch2 signaling pathway and the expression of VEGFR2 molecule in colorectal tissue. In addition, the Lactobacillus plantarum CCFM164 can also improve the intestinal flora population and short-chain fatty acid levels in the intestine. The Lactobacillus plantarum CCFM164 is used to prepare a fermented food for the inhibition of the occurrence of colorectal cancer with wild applications.
Abstract:
The Lactobacillus plantarum CCFM8661 is tolerant to acid and lead ions in vitro which can tolerate lead ions solution with the initial concentration of 150 mg/L, and has a strong capability of binding lead ions, which can reduce the lead level in mice blood, liver, kidney and stomach, significantly improve antioxidant indicators and alleviate pathological symptoms of lead exposed mice.
Abstract:
The disclosure discloses Lactococcus lactis subsp. lactis CCFM1018 and application thereof in preparation of food and medicine for excreting a plasticizer, and belongs to the technical field of microorganisms. The Lactococcus lactis subsp. lactis CCFM1018 not only is significantly better than the intestinal resident bacteria Escherichia coli and Enterococcus faecalis in terms of the effect of promoting the excretion of DEHP and MEHP, but also is better than the commercial strain Lactobacillus rhamnosus LGG. Therefore, the Lactococcus lactis subsp. lactis CCFM1018 of the disclosure can be used as an effective means to prevent and alleviate body damage caused by DEHP and MEHP, and does not have toxic or side effects of drugs. Lactococcus lactis subsp. lactis CCFM1018 can be used to prepare pharmaceutical compositions and fermented food for alleviating and preventing the toxicity of DEHP and metabolites thereof, and has a very broad application prospect.
Abstract:
The disclosure discloses P. pentosaceus CCFM1012, fermented food thereof and application thereof to preparation of a C. jejuni infection antagonism medicine. The P. pentosaceus CCFM1012 of the disclosure can remarkably reduce a colonization rate of in-vivo C. jejuni of mice infected with C. jejuni and transcriptional activity of virulence genes flaA, cadF, cdtB, cdtC and dnaJ of the C. jejuni, can effectively relieve physiological damage caused by infection of the C. jejuni, can also be used for preparing dairy products, bean products and fruit and vegetable fruits for preventing infection of the C. jejuni and an additive that can be added to a poultry and livestock feed for reducing infection and carrying of the C. jejuni in poultry and livestock, and has quite broad application prospects.
Abstract:
A method for making xanthan gum copolymer nanomicelles comprising: 1) degrading xanthan gum in aqueous solution to obtain degraded xanthan gum; 2) preparing xanthan gum bromide from the degraded xanthan gum; 3) preparing xanthan gum copolymer from the xanthan gum bromide and 4) making the gum copolymer nanomicelles from the xanthan gum copolymer. The xanthan gum copolymer nanomicelles have good morphological regularity, good biocompatibility and stable performance as an anticancer drug carriers.
Abstract:
The invention provides a novel strain of cadmium-removing Lactobacillus plantarum bacterium, CCFM8610, which has a good tolerance to acidic environments. Lactobacillus plantarum CCFM8610 has a good tolerance to cadmium-containing medium and can effectively bind cadmium in vitro. Animal studies have shown that it can effectively reduce tissue cadmium accumulation and facilitate fecal cadmium excretion. Lactobacillus plantarum CCFM8610 has a great potential to be used as an active ingredient in cadmium-removing pharmaceutical drugs and fermented foods.