Abstract:
A switch circuit is described, where a switch to be controlled is formed of two NMOS transistors having their source terminals connected together and their gate terminals connected together. Their drain terminals are the input and output terminals of the switch. A driver circuit controls a bootstrap circuit that is formed of a latching circuit and a capacitor. When the switch is in an off state, the driver circuit connects the capacitor to a charging voltage source for charging the capacitor to a bootstrap voltage, and applies a non-zero voltage across the latching circuit. When the driver circuit is controlled to turn on the switch, the driver circuit disconnects the capacitor from the charging voltage source, and the latching circuit becomes conductive and effectively connects the capacitor across the gate and source terminals of the switch to turn it on with the bootstrap voltage. The bootstrap voltage across the capacitor maintains the latching circuit in a latched conductive state.
Abstract:
An operational amplifier (opamp) [74] coupled in a negative-feedback configuration [82] [84] comprising a driving opamp [76]; a linear controller [78]; and a mechanism [80] controlling the driving opamp's [76] offset. A voltage signal Vin provided by the feedback network [82][84] characterizes all errors caused by the driving opamp [76]. The controller [78] monitors this voltage and minimizes the signal-band spectral components thereof by inducing an offset in the driving opamp [76]. The offset control mechanism [80] has approximately constant gain and only little phase delay in the signal band. The controller [78] may be a linear high-order Chebychev filter providing substantial gain in a wide frequency range, thereby efficiently suppressing all signal-band errors, including noise, harmonic distortion, and slew-rate errors, caused by the driving opamp [76]. The controller's [78] frequency response can be designed essentially independently of the feedback network's [82][84] feedback factor. The operational amplifier [74] is a general-purpose circuit. Important applications include video amplifiers and current-to-voltage conversion for asynchronous-digital-subscriber-line (ADSL) moderns.
Abstract:
A error-shaping digital-to-analog (D/A) converter system [100], consisting of a separator [102], a set of D/A converters [104] [108], a set of optional analog filters [106] [108], a summation device [112], and an optional analog filter [114]. The separator [102] separates the digital input signal into a set of low-resolution signals of which only one has significant power in the system's signal band. These signals are D/A converted by mismatch-shaping D/A converters [104] [108], in some embodiments filtered by analog filters [106] [108], and then added by the summing device [112]. Imperfections of the employed D/A converters [104] [108] will only cause very small errors in the signal band, such errors being essentially uncorrelated to the digital input signal. The D/A converter system is comparable to a scaled-element D/A converter in which the distortion is transformed into a noise component having very little power in the signal band.
Abstract:
In an A/D converter, isolation switches are used between the capacitors and the conversion switches. The conversion switches are those switches used to selectively couple the plates of the binary weighted capacitors to either Vref or 0 volts during the A/D conversion process. During sampling of the input voltage signal, the isolation switches are opened to isolate the conversion switches from the wide range of possible input voltages at the bottom plates of the capacitors. Therefore, the voltage across the conversion switches is substantially limited to Vref. Hence, the conversion switches can be very fast low voltage switches. After sampling of the input voltage, when the sampled input voltage is locked in, the conversion switches operate normally to selectively connect the capacitor plates to either Vref or 0 volts for successively approximating the input voltage, whereby a digital code representing the sampled input voltage is generated.
Abstract:
In one embodiment, an A/D converter samples an analog input signal voltage by applying the input signal to a first capacitor terminal, while a second capacitor terminal is connected to ground via an NMOS sampling switch, to charge the capacitor to the input signal voltage. During an analog-to-digital conversion process, the second capacitor terminal may swing in a voltage range that extends below ground. A controller circuit provides bias voltage signals to a gate terminal and to a p-well of the NMOS sampling switch, to selectively turn the sampling switch on and off. In a first step of a multi-step sampling process, the controller very quickly discharges the gate terminal to ground to isolate a quantity of charge on the second capacitor plate. In a subsequent step of the sampling process, the controller circuit applies a negative voltage to the gate terminal and p-well to ensure that the quantity of change is substantially preserved during the ensuing analog-to-digital conversion process.
Abstract:
A switch circuit is described, where a switch to be controlled is formed of two NMOS transistors having their source terminals connected together and their gate terminals connected together. Their drain terminals are the input and output terminals of the switch. A driver circuit controls a bootstrap circuit that is formed of a latching circuit and a capacitor. When the switch is in an off state, the driver circuit connects the capacitor to a charging voltage source for charging the capacitor to a bootstrap voltage, and applies a non-zero voltage across the latching circuit. When the driver circuit is controlled to turn on the switch, the driver circuit disconnects the capacitor from the charging voltage source, and the latching circuit becomes conductive and effectively connects the capacitor across the gate and source terminals of the switch to turn it on with the bootstrap voltage. The bootstrap voltage across the capacitor maintains the latching circuit in a latched conductive state.
Abstract:
An analog-to-digital converter system [50D] processing an input signal, g, which can be either a discrete-time or a continuous-time signal. A first quantizer [154] generates a first digital signal, d0(k), representing the sum of the input signal, g, and a dithering signal, y0. A digital-to-analog converter [156] generates an analog feedback signal, alpha, representing accurately the first digital signal, d0(k). The DAC [156] may be linearized by the use of mismatch-shaping techniques. A filter [158] generates the dithering signal, y0, by selectively amplifying in the signal band the residue signal, r0, defined as the difference of the input signal, g, and the analog feedback signal, alpha. Optional signal paths [166][168] are used to minimize the closed-loop signal transfer function from g to y0, which ideally will be zero. An analog compensation signal, m0, which is described by a well-controlled relationship to the residue signal, r0, is extracted from the filter [158]. Ideally, the closed-loop signal transfer function from g to m0 will be zero, or at least small in the signal band. A second quantizer [160] converts the analog compensation signal, m0, into a second digital signal, dm0(k). The two digital signals, d0(k) and dm0(k), are filtered individually and then added to form the overall output signal, dg(k). The second digital filter [164] has a low signal-band gain, which implies that the sensitivity to signal-band errors caused by the second quantizer [160] will be low. The output signal, dg(k), is a highly-accurate high-resolution representation of the input signal, g. Circuit imperfections, such as mismatch, gain errors, and nonlinearities, will cause only noise-like errors having a very low spectral power density in the signal band. The invention facilitates the implementation of uncalibrated highly-linear high-resolution wide-bandwidth A/D converters [50D], e.g., for use in digital communication systems, such as xDSL modems and other demanding consumer-market products for which low cost is of the essence.
Abstract:
A low-voltage constant-impedance analog switch based on a single MOSFET [328] as the main switching element. The constant-impedance on-state operation is obtained by connecting a charged capacitor [326] between the gate and source terminals of the MOSFET [328]. The switch can be compensated for the body effect, which may be necessary to obtain the required level of linearity. Low-voltage operation is made feasible by employing an internal feedback loop that locks in the switch's on-state. The switch can be implemented in a single-well CMOS bulk technology, and it can operate at supply-voltage differences that are only slightly higher than the technology's threshold voltage.
Abstract:
An embodiment of an analog-to-digital converter system is described wherein an analog voltage signal Vin(t) is provided by an input amplifier. The analog signal Vin(t) has a predetermined full-scale range that is less wide than a reference voltage (Vref) range used by a downstream ADC to derive a first digital (numerical) representation D1(k) of a sampled value Vin(k) of the analog signal Vin(t). The first digital representation has N bits. A digital circuit then converts the N-bit D1(k) code to a second numerical representation D2(k) of the sampled analog voltage Vin(k) with respect to the full-scale range of the ADC system. The D2(k) code has P bits of resolution, which may be less than N bits. The P-bit D2(k) code representing Vin(k) is the output of the ADC system. Therefore, the width of the reference voltage range applied to the ADC is greater than the width of the system's full-scale range at the output of the system.
Abstract:
In an A/D converter, isolation switches are used between the capacitors and the conversion switches. The conversion switches are those switches used to selectively couple the plates of the binary weighted capacitors to either Vref or 0 volts during the A/D conversion process. During sampling of the input voltage signal, the isolation switches are opened to isolate the conversion switches from the wide range of possible input voltages at the bottom plates of the capacitors. Therefore, the voltage across the conversion switches is substantially limited to Vref. Hence, the conversion switches can be very fast low voltage switches. After sampling of the input voltage, when the sampled input voltage is locked in, the conversion switches operate normally to selectively connect the capacitor plates to either Vref or 0 volts for successively approximating the input voltage, whereby a digital code representing the sampled input voltage is generated.