Abstract:
A MOS RF surveillance and/or identification tag, and methods for its manufacture and use. The tag includes an interposer, an antenna/inductor, and integrated circuitry on the interposer. The integrated circuitry has a lowest layer in physical contact with the interposer. The method of manufacture includes forming a lowest layer of integrated circuitry on an interposer, forming successive layers of the integrated circuitry on the lowest layer of integrated circuitry, and attaching an electrically conductive functional layer to the interposer. Alternatively, an electrically conductive structure may be formed from a functional layer attached to the interposer. The method of use includes causing/inducing a current in the present tag sufficient for it to generate, reflect or modulate a detectable electromagnetic signal, detecting the signal, and optionally, processing information conveyed by the detectable electromagnetic signal.
Abstract:
The disclosure concerns an electrochemical cell including a cathode, an electrolyte, and an anode including an elemental metal or metal alloy. The electrolyte includes an electrolyte salt, an ionic liquid, and an optional first polymer binder. The electrolyte and/or the anode further includes a protective metal salt in an amount sufficient to (i) reduce or eliminate hydrogen evolution or open circuit side reactions in the electrochemical cell, or (ii) plate out onto or alloy with the anode metal or conductive additives in the anode. The electrochemical cell may further include a first current collector in contact with the cathode, and a second current collector in contact with the anode. The second current collector may include a metal or metal alloy. In such cells, the second current collector may further include the protective metal salt, and the protective metal salt may plate out onto or alloy with the metal or metal alloy of the second current collector.
Abstract:
Radio frequency identification (RFID) tags and processes for manufacturing the same. The RFID device generally includes (1) a metal antenna and/or inductor; (2) a dielectric layer thereon, to support and insulate integrated circuitry from the metal antenna and/or inductor; (3) a plurality of diodes and a plurality of transistors on the dielectric layer, the diodes having at least one layer in common with the transistors; and (4) a plurality of capacitors in electrical communication with the metal antenna and/or inductor and at least some of the diodes, the plurality of capacitors having at least one layer in common with the plurality of diodes and/or with contacts to the diodes and transistors. The method preferably integrates liquid silicon-containing ink deposition into a cost effective, integrated manufacturing process for the manufacture of RFID circuits. Furthermore, the present RFID tags generally provide higher performance (e.g., improved electrical characteristics) as compared to tags containing organic electronic devices.
Abstract:
The disclosure concerns an electrolyte, an electrolyte ink, a battery or other electrochemical cell including the same, and methods of making the electrolyte and electrochemical cell. The electrolyte includes an ionic liquid comprising a hydrophilic or hydrophobic anion, a multi-valent metal cation suitable for use in a battery cell, a polymer binder, and optional additives (e.g., a solid filler). The electrolyte ink includes components of the electrolyte and a solvent. The solvent and the polymer binder (or, when present, the solid filler) have a hydrophilicity, hydrophobicity or polarity similar to or matching that of the ionic liquid's anion, or form hydrogen bonds with the ionic liquid's anion. The electrolyte includes a solid inorganic filler that provides mechanical support form hydrogen bonds with the anion and/or a counterpart anion of the multi-valent metal cation, and links with a material in an adjacent layer of the electrochemical cell.