Abstract:
A pump is provided which includes a rotating element, and a volute housing having a fluid inlet and a fluid outlet. In operational state, the rotating element rotates, drawing fluid through the fluid inlet of the volute housing and expelling the fluid at a higher pressure through the fluid outlet. Further, the pump includes a bypass mechanism integrated, at least in part, within the volute housing and exposing in nonoperational state of the pump, a bypass path through, at least in part, the volute housing that allows the fluid to pass from the fluid inlet to the fluid outlet of the pump.
Abstract:
A fan guard and method of use thereof. The fan guard includes a first lattice, a second lattice, a first solenoid operably connected to the second lattice, wherein the first solenoid is configured to move the second lattice relative to the first lattice from a first position to an alternate position and a second solenoid, the second solenoid configured to extend through a portion of the first lattice when the second lattice is in the alternate position.
Abstract:
A fan guard and method of use thereof. The fan guard includes a guard housing, the guard housing including a housing opening, one or more lattices, wherein the one or more lattices are pivotably connected to a portion of the guard housing, a linkage arm, wherein the one or more lattices are operably connected to the linkage arm, and a wedge portion operably connected to the linkage arm, wherein the wedge portion comprises a wedge portion face, and wherein the linkage arm is configured to move along a length of the guard housing and the linkage arm is configured to pivot the one or more lattices from a first position to a second position.
Abstract:
A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
Abstract:
Apparatuses and methods are provided for locking an air-moving assembly within a chassis when in operational state. The apparatus includes a locking louver assembly having a louver(s) and locking mechanism. The louver(s) is disposed at an air inlet or outlet of the air-moving assembly, and pivots between operational and quiesced orientations, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The locking mechanism includes a keying element(s) affixed to the louver(s) to pivot therewith, which includes an elongated key(s) oriented in a first direction when the louver(s) is in operational orientation, and a second direction when in quiesced orientation. A key-receiving element(s) is associated with the chassis and includes a key opening(s) which receives and accommodates movement of the elongated key(s) between the first and second directions, and prevents removal of the air-moving assembly from the chassis with the key(s) oriented in the first direction.
Abstract:
Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
Abstract:
A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
Abstract:
Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
Abstract:
Tile assemblies are provided having first and second tile sections and an airflow control mechanism. The first tile section allows, in a cold air cooling mode, cold air from a cold air plenum of a data center to flow into a cold air containment aisle for supply to an electronics rack(s). The second tile section is associated with the first tile section to allow, in a failover cooling mode, ambient air external the cold air plenum to flow, via an air pathway through the second and first tile sections into the containment aisle. The airflow control mechanism is disposed within the air pathway to block cold air from the cold air plenum from passing through the second tile section in the cold air cooling mode, and to allow, in the failover cooling mode, ambient air to pass through the air pathway into the cold air containment aisle.
Abstract:
Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.