摘要:
A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
摘要:
A photovoltaic device includes a first contact and a hybrid absorber layer. The hybrid absorber layer includes a chalcogenide layer and a semiconductor layer in contact with the chalcogenide layer. A buffer layer is formed on the absorber layer, and a transparent conductive contact layer is formed on the buffer layer.
摘要:
A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
摘要:
A method for fabricating a photovoltaic device includes forming a film including titanium on a conductive layer formed on a substrate. An absorber layer is formed including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the film. The absorber layer is annealed to diffuse titanium therein and to recrystallize the CZTS material of the film. A buffer layer is formed on the absorber layer, and a transparent conductive layer is formed on the buffer layer.
摘要:
A photosensitive device and method includes a top cell having an N-type layer, a P-type layer and a top intrinsic layer therebetween. A bottom cell includes an N-type layer, a P-type layer and a bottom intrinsic layer therebetween. The bottom intrinsic layer includes a Cu—Zn—Sn containing chalcogenide.
摘要:
A method for thermal exfoliation includes providing a target layer on a substrate to form a structure. A stressor layer is deposited on the target layer. The structure is placed in a temperature controlled environment to induce differential thermal expansion between the target layer and the substrate. The target layer is exfoliated from the substrate when a critical temperature is achieved such that the target layer is separated from the substrate to produce a standalone, thin film device.
摘要:
A method for fabricating a photovoltaic device includes forming a film including titanium on a conductive layer formed on a substrate. An absorber layer is formed including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the film. The absorber layer is annealed to diffuse titanium therein and to recrystallize the CZTS material of the film. A buffer layer is formed on the absorber layer, and a transparent conductive layer is formed on the buffer layer.
摘要:
A photovoltaic device includes a first contact and a hybrid absorber layer. The hybrid absorber layer includes a chalcogenide layer and a semiconductor layer in contact with the chalcogenide layer. A buffer layer is formed on the absorber layer, and a transparent conductive contact layer is formed on the buffer layer.
摘要:
A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
摘要:
A photovoltaic device includes a first contact and a hybrid absorber layer. The hybrid absorber layer includes a chalcogenide layer and a semiconductor layer in contact with the chalcogenide layer. A buffer layer is formed on the absorber layer, and a transparent conductive contact layer is formed on the buffer layer.