Abstract:
A training apparatus has an input device and a wearable computing device with a bio-signal sensor and a display to provide an interactive virtual reality (“VR”) environment for a user. The bio-signal sensor receives bio-signal data from the user. The user interacts with content that is presented in the VR environment. The user interactions and bio-signal data are scored with a user state score and a performance scored. Feedback is given to the user based on the scores in furtherance of training. The feedback may update the VR environment and may trigger additional VR events to continue training.
Abstract:
A training apparatus has an input device and a wearable computing device with a bio-signal sensor and a display to provide an interactive virtual reality (“VR”) environment for a user. The bio-signal sensor receives bio-signal data from the user. The user interacts with content that is presented in the VR environment. The user interactions and bio-signal data are scored with a user state score and a performance scored. Feedback is given to the user based on the scores in furtherance of training. The feedback may update the VR environment and may trigger additional VR events to continue training.
Abstract:
A system and method may be provided for associating bio-signal data (e.g. EEG brain scan data) from at least one user with at least one music data item (e.g. song, or piece of music). By associating bio-signal data, or emotions determined therefrom, with music, the system may establish a data store of music associated with emotions. That database may then be leveraged upon determining that a user is feeling a particular emotion through an EEG scan. When a particular emotion is detected in EEG data of a user, the system may then respond based at least partly on the same or similar emotion being associated with one or more music data items in the system. For example, the system may recommend a particular song associated with the same emotion presently being experienced by the user.
Abstract:
A method is provided, performed by a wearable computing device comprising at least one bio-signal measuring sensor, the at least one bio-signal measuring sensor including at least one brainwave sensor, comprising: acquiring at least one bio-signal measurement from a user using the at least one bio-signal measuring sensor, the at least one bio-signal measurement comprising at least one brainwave state measurement; processing the at least one bio-signal measurement, including at least the at least one brainwave state measurement, in accordance with a profile associated with the user; determining a correspondence between the processed at least one bio-signal measurement and at least one predefined device control action; and in accordance with the correspondence determination, controlling operation of at least one component of the wearable computing device, such as modifying content displayed on a display of the wearable computing device. Various types of bio-signals, including brainwaves, may be measured and used to control the device in various ways.
Abstract:
A method is provided, performed by a wearable computing device comprising at least one bio-signal measuring sensor, the at least one bio-signal measuring sensor including at least one brainwave sensor, comprising: acquiring at least one bio-signal measurement from a user using the at least one bio-signal measuring sensor, the at least one bio-signal measurement comprising at least one brainwave state measurement; processing the at least one bio-signal measurement, including at least the at least one brainwave state measurement, in accordance with a profile associated with the user; determining a correspondence between the processed at least one bio-signal measurement and at least one predefined device control action; and in accordance with the correspondence determination, controlling operation of at least one component of the wearable computing device, such as modifying content displayed on a display of the wearable computing device. Various types of bio-signals, including brainwaves, may be measured and used to control the device in various ways.
Abstract:
A training apparatus has an input device and a wearable computing device with a bio-signal sensor and a display to provide an interactive virtual reality (“VR”) environment for a user. The bio-signal sensor receives bio-signal data from the user. The user interacts with content that is presented in the VR environment. The user interactions and bio-signal data are scored with a user state score and a performance scored. Feedback is given to the user based on the scores in furtherance of training. The feedback may update the VR environment and may trigger additional VR events to continue training.
Abstract:
A system and method may be provided for associating bio-signal data (e.g. EEG brain scan data) from at least one user with at least one music data item (e.g. song, or piece of music). By associating bio-signal data, or emotions determined therefrom, with music, the system may establish a data store of music associated with emotions. That database may then be leveraged upon determining that a user is feeling a particular emotion through an EEG scan. When a particular emotion is detected in EEG data of a user, the system may then respond based at least partly on the same or similar emotion being associated with one or more music data items in the system. For example, the system may recommend a particular song associated with the same emotion presently being experienced by the user.
Abstract:
A system and method may be provided for associating bio-signal data (e.g. EEG brain scan data) from at least one user with at least one music data item (e.g. song, or piece of music). By associating bio-signal data, or emotions determined therefrom, with music, the system may establish a data store of music associated with emotions. That database may then be leveraged upon determining that a user is feeling a particular emotion through an EEG scan. When a particular emotion is detected in EEG data of a user, the system may then respond based at least partly on the same or similar emotion being associated with one or more music data items in the system. For example, the system may recommend a particular song associated with the same emotion presently being experienced by the user.
Abstract:
A system and method may be provided for associating bio-signal data (e.g. EEG brain scan data) from at least one user with at least one music data item (e.g. song, or piece of music). By associating bio-signal data, or emotions determined therefrom, with music, the system may establish a data store of music associated with emotions. That database may then be leveraged upon determining that a user is feeling a particular emotion through an EEG scan. When a particular emotion is detected in EEG data of a user, the system may then respond based at least partly on the same or similar emotion being associated with one or more music data items in the system. For example, the system may recommend a particular song associated with the same emotion presently being experienced by the user.