Abstract:
Embodiments herein describe techniques for a semiconductor device including a package substrate. The package substrate includes a via pad at least partially in a core layer. A first dielectric layer having a first dielectric material is above the via pad and the core layer, where the first dielectric layer has a first through hole that is through the first dielectric layer to reach the via pad. A second dielectric layer having a second dielectric material is at least partially filling the first through hole, where the second dielectric layer has a second through hole that is through the second dielectric layer to reach the via pad. A via is further within the second through hole of the second dielectric layer, surrounded by the second dielectric material, and in contact with the via pad. Other embodiments may be described and/or claimed.
Abstract:
Techniques are provided for an inductor at a first level interface between a first die and a second die. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first die, second conductive traces of a second die, and a plurality of connectors configured to connect the first die with the second die. Each connector of the plurality of connecters can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
Abstract:
Techniques are provided for an inductor at a first level interface between a first die and a second die. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first die, second conductive traces of a second die, and a plurality of connectors configured to connect the first die with the second die. Each connector of the plurality of connecters can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
Abstract:
Microelectronic assemblies, related devices, and methods are disclosed herein. In some embodiments, a microelectronic assembly may include a die having a first surface and an opposing second surface; a capacitor having a surface, wherein the surface of the capacitor is coupled to the first surface of the die; and a conductive pillar coupled to the first surface of the die. In some embodiments, a microelectronic assembly may include a capacitor in a first dielectric layer; a conductive pillar in the first dielectric layer; a first die having a surface in the first dielectric layer; and a second die having a surface in a second dielectric layer, wherein the second dielectric layer is on the first dielectric layer, and wherein the surface of the second die is coupled to the capacitor, to the surface of the first die, and to the conductive pillar.
Abstract:
Disclosed herein are asymmetric cored integrated circuit (IC) package supports, and related devices and methods. For example, in some embodiments, an IC package support may include a core region having a first face and an opposing second face, a first buildup region at the first face of the core region, and a second buildup region at the second face of the core region. A thickness of the first buildup region may be different than a thickness of the second buildup region. In some embodiments, an inductor may be included in the core region.
Abstract:
Embodiments of the present disclosure are directed towards an acousto-optics deflector and mirror for laser beam steering and associated techniques and configurations. In one embodiment, a laser system may include an acousto-optics module to deflect a laser beam in a first scanning direction of the laser beam on an integrated circuit (IC) substrate when the IC substrate is in a path of the laser beam and a mirror having at least one surface to receive the laser beam from the acousto-optics module, the mirror to move to control position of the laser beam in a second scanning direction, wherein the second scanning direction is substantially perpendicular to the first scanning direction. Other embodiments may be described and/or claimed.
Abstract:
Some embodiments of the present disclosure describe a multi-layer package with a bi-layered dielectric structure and associated techniques and configurations. In one embodiment, an integrated circuit (IC) package assembly includes a dielectric structure coupled with a metal layer, with the dielectric structure including a first dielectric layer and a second dielectric layer, wherein the first dielectric layer has a thickness less than a thickness of the second dielectric layer and a dielectric loss tangent greater than a dielectric loss tangent of the second layer. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations for interconnect structures embedded in a package assembly including a bridge. In one embodiment, a package assembly may include a package substrate, a bridge embedded in the package substrate and including a bridge substrate, and an interconnect structure including a via extending through the package substrate into a surface of the bridge substrate and configured to interface with a conductive feature disposed on or beneath the surface of the bridge substrate. The interconnect structure may be configured to route electrical signals between the conductive feature and a die mounted on the package substrate. Other embodiments may be described and/or claimed.
Abstract:
Microelectronic assemblies, related devices, and methods are disclosed herein. In some embodiments, a microelectronic assembly may include a die having a first surface and an opposing second surface; a capacitor having a surface, wherein the surface of the capacitor is coupled to the first surface of the die; and a conductive pillar coupled to the first surface of the die. In some embodiments, a microelectronic assembly may include a capacitor in a first dielectric layer; a conductive pillar in the first dielectric layer; a first die having a surface in the first dielectric layer; and a second die having a surface in a second dielectric layer, wherein the second dielectric layer is on the first dielectric layer, and wherein the surface of the second die is coupled to the capacitor, to the surface of the first die, and to the conductive pillar.
Abstract:
Embodiments herein relate to integrating FIVR switching circuitry into a substrate that has a first side and a second side opposite the first side, where the first side of the substrate to electrically couple with a die and to provide voltage to the die and the second side of the substrate is to couple with an input voltage source. In embodiments, the FIVR switching circuitry may be printed onto the substrate using OFET, CNT, or other transistor technology, or may be included in a separate die that is incorporated within the substrate.