Abstract:
A three-dimensional display module includes a substrate, a display layer, a first electrode layer, a liquid-crystal layer, a second electrode layer, and a drive unit. The substrate has first electrodes and second electrodes. The display layer is disposed on the substrate and includes light-emitting elements. The first electrode layer is disposed on the display layer. The liquid-crystal layer is disposed on the display layer. The second electrode layer is disposed on the liquid-crystal layer. The drive unit drives the first electrodes and the first electrode layer to supply power to the light-emitting elements, such that the light-emitting elements generate light passing through the liquid-crystal layer to form a display image. The drive unit drives the second electrodes and the second electrode layer to produce an electric field on the liquid-crystal layer to change focal length of the liquid-crystal layer so as to control depth of field of the display image.
Abstract:
A transfer-bonding method for light emitting devices including following steps is provided. A plurality of light emitting devices is formed over a first substrate and is arranged in array, wherein each of the light emitting devices includes a device layer and an interlayer sandwiched between the device layer and the first substrate. A protective layer is formed over the first substrate to selectively cover parts of the light emitting devices, and other parts of the light emitting devices are uncovered by the protective layer. The device layers uncovered by the protective layer are bonded with a second substrate. The interlayers uncovered by the protective layer are removed, so that parts of the device layers uncovered by the protective layer are separated from the first substrate and are transfer-bonded to the second substrate.
Abstract:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
Abstract:
A three-dimensional display module includes a substrate, a display layer, a first electrode layer, a liquid-crystal layer, a second electrode layer, and a drive unit. The substrate has first electrodes and second electrodes. The display layer is disposed on the substrate and includes light-emitting elements. The first electrode layer is disposed on the display layer. The liquid-crystal layer is disposed on the display layer. The second electrode layer is disposed on the liquid-crystal layer. The drive unit drives the first electrodes and the first electrode layer to supply power to the light-emitting elements, such that the light-emitting elements generate light passing through the liquid-crystal layer to form a display image. The drive unit drives the second electrodes and the second electrode layer to produce an electric field on the liquid-crystal layer to change focal length of the liquid-crystal layer so as to control depth of field of the display image.
Abstract:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
Abstract:
A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
Abstract:
A transfer-bonding method for light emitting devices including following steps is provided. A plurality of light emitting devices is formed over a first substrate and is arranged in array, wherein each of the light emitting devices includes a device layer and an interlayer sandwiched between the device layer and the first substrate. A protective layer is formed over the first substrate to selectively cover parts of the light emitting devices, and other parts of the light emitting devices are uncovered by the protective layer. The device layers uncovered by the protective layer are bonded with a second substrate. The interlayers uncovered by the protective layer are removed, so that parts of the device layers uncovered by the protective layer are separated from the first substrate and are transfer-bonded to the second substrate.