Abstract:
A cutting tool controller and method of controlling are provided. The method includes providing a swing angle for the cutting tool, obtaining a swing vector of the cutting tool through kinematics calculation according to the swing angle, using the swing vector of the cutting tool to calculate a set of possible solutions of a swaying angle of the cutting tool, selecting a possible solution satisfying an operation condition of the machine from the set of possible solutions, using the selected possible solution to calculate an offset of positions of the cutting tool before and after swaying, so as to generate a compensation vector, calculating required compensation values for three axes of the machine according to the compensation vector, and outputting a control command including the compensation values, such that the cutting tool of the machine or a working table for placing the workpiece thereon of the machine moves correspondingly.
Abstract:
A goal-oriented numerical control automatic tuning system is used for a numerical controller of a machine tool to automatically tune the machine tool. The system includes a goal-oriented input module for receiving external goal values; a machining test path selecting module for receiving an external machining path; and an automatic machine-tuning equation module including a control equation with a predetermined equation coefficient for receiving the goal values and the machining path from the goal-oriented input module and the machining test path selecting module, respectively, such that an appropriate control parameter can be obtained by calculating the control equation based on the goal values and the machining path, and then this control parameter passed to a numerical controller in order to control actuation of the machine tool.
Abstract:
A machining assistance method and an apparatus using the same are provided. The machining assistance method comprises following steps. Firstly, a circle correction path is received for driving a platform to perform a circular motion. Next, a driving torque of the server driver driving the platform is obtained. Then, whether the driving torque is changed to 0 is determined; if yes, a first position of the platform is recorded. Then, whether the driving torque is changed to a peak is determined; if yes, a second position of the platform is recorded. After that, the server driver is controlled to drive the platform according to a first position and a second position in a machining process.
Abstract:
A method for recognizing a deburring trajectory, relevant to be performed by a controller or a computer, includes the steps of: according to a process flow of a workpiece, analyzing a CAD file of the workpiece, determining a burr processing area and obtaining a mathematical model of boundary contour curve; applying a linear contour sensor to scan the workpiece to obtain contour section information of the workpiece; performing curve fitting upon the contour section information of the workpiece and the mathematical model of boundary contour curve so as to obtain a boundary curve function; and, utilizing the boundary curve function to determine deburring position information of the workpiece and to further generate a processing path. In addition, a system for recognizing a deburring trajectory is also provided.
Abstract:
An automated calibration system for a workpiece coordinate frame of a robot includes a physical image sensor having a first image central axis, and a controller for controlling the physical image sensor adapted on a robot to rotate by an angle to set up a virtual image sensor having a second image central axis. The first and the second image central axes are intersected at an intersection point. The controller controls the robot to repeatedly move back and forth a characteristic point on the workpiece between these two axes until the characteristic point overlaps the intersection point. The controller records a calibration point including coordinates of joints of the robot, then the controller moves another characteristic point and repeats the foregoing movement to generate several other calibration points. According to the calibration points, the controller calculates relative coordinates of a virtual tool center point and the workpiece to the robot.
Abstract:
A backlash automatic detection system comprises a control device and a machine tool. The machine tool comprises a servo driver, a lead screw, a nut seat and a platform. The method comprises: entering an initial state and outputting a control command to the servo driver through the control device; driving the lead screw by the servo driver to move the nut seat towards a first direction and changing the movement direction of the nut seat towards a reverse second direction by the servo driver; defining a backlash phenomenon period according to one time point at which the nut seat starts to move towards the second direction and another time point at which the platform is driven to move by the nut seat; defining the displacement of the nut seat corresponding to the backlash phenomenon period as a backlash value.
Abstract:
A system for establishing a junction trace of an assembly includes a surface model creating module, a processing module, and a material inspection module. The assembly includes a first part and a second part assembled with each other. The surface model creating module scans the first part and the second part to separately establish first surface model data and second surface model data. The processing module establishes assembled surface model data according to the first surface model data and the second surface model data, determines a junction region from the assembled surface model data, and determines inspection points mapped on the assembly according to the junction region. The material inspection module inspects materials of the assembly at the inspection points. The processing module establishes a junction trace of the first part and the second part in the assembly according to a material inspection result.
Abstract:
A system for establishing a junction trace of an assembly includes a surface model creating module, a processing module, and a material inspection module. The assembly includes a first part and a second part assembled with each other. The surface model creating module scans the first part and the second part to separately establish first surface model data and second surface model data. The processing module establishes assembled surface model data according to the first surface model data and the second surface model data, determines a junction region from the assembled surface model data, and determines inspection points mapped on the assembly according to the junction region. The material inspection module inspects materials of the assembly at the inspection points. The processing module establishes a junction trace of the first part and the second part in the assembly according to a material inspection result.
Abstract:
A machining assistance method and an apparatus using the same are provided. The machining assistance method comprises following steps. Firstly, a circle correction path is received for driving a platform to perform a circular motion. Next, a driving torque of the server driver driving the platform is obtained. Then, whether the driving torque is changed to 0 is determined; if yes, a first position of the platform is recorded. Then, whether the driving torque is changed to a peak is determined; if yes, a second position of the platform is recorded. After that, the server driver is controlled to drive the platform according to a first position and a second position in a machining process.
Abstract:
A cutting tool controller and method of controlling are provided. The method includes providing a swing angle for the cutting tool, obtaining a swing vector of the cutting tool through kinematics calculation according to the swing angle, using the swing vector of the cutting tool to calculate a set of possible solutions of a swaying angle of the cutting tool, selecting a possible solution satisfying an operation condition of the machine from the set of possible solutions, using the selected possible solution to calculate an offset of positions of the cutting tool before and after swaying, so as to generate a compensation vector, calculating required compensation values for three axes of the machine according to the compensation vector, and outputting a control command including the compensation values, such that the cutting tool of the machine or a working table for placing the workpiece thereon of the machine moves correspondingly.