Abstract:
A backlash automatic detection system comprises a control device and a machine tool. The machine tool comprises a servo driver, a lead screw, a nut seat and a platform. The method comprises: entering an initial state and outputting a control command to the servo driver through the control device; driving the lead screw by the servo driver to move the nut seat towards a first direction and changing the movement direction of the nut seat towards a reverse second direction by the servo driver; defining a backlash phenomenon period according to one time point at which the nut seat starts to move towards the second direction and another time point at which the platform is driven to move by the nut seat; defining the displacement of the nut seat corresponding to the backlash phenomenon period as a backlash value.
Abstract:
A contour accuracy measuring system and a contour accuracy measuring method are provided. The contour accuracy measuring system captures location coordinate data of shafts of a machine tool. The location coordinate data are calculated to obtain a first true round trajectory on an inclined plane as reference information. The contour accuracy measuring system then adjusts parameters of the locations of the shafts based on the location coordinate data of the shafts of the reference information to generate a second true round trajectory on the inclined plane, so as to get to know whether the locations of the shafts after the parameters are adjusted comply with a standard. Therefore, the overall measurement process can be speeded up by automatically measuring the parameters and automatically testing an operating status.
Abstract:
A cutting tool controller and method of controlling are provided. The method includes providing a swing angle for the cutting tool, obtaining a swing vector of the cutting tool through kinematics calculation according to the swing angle, using the swing vector of the cutting tool to calculate a set of possible solutions of a swaying angle of the cutting tool, selecting a possible solution satisfying an operation condition of the machine from the set of possible solutions, using the selected possible solution to calculate an offset of positions of the cutting tool before and after swaying, so as to generate a compensation vector, calculating required compensation values for three axes of the machine according to the compensation vector, and outputting a control command including the compensation values, such that the cutting tool of the machine or a working table for placing the workpiece thereon of the machine moves correspondingly.
Abstract:
A goal-oriented numerical control automatic tuning system is used for a numerical controller of a machine tool to automatically tune the machine tool. The system includes a goal-oriented input module for receiving external goal values; a machining test path selecting module for receiving an external machining path; and an automatic machine-tuning equation module including a control equation with a predetermined equation coefficient for receiving the goal values and the machining path from the goal-oriented input module and the machining test path selecting module, respectively, such that an appropriate control parameter can be obtained by calculating the control equation based on the goal values and the machining path, and then this control parameter passed to a numerical controller in order to control actuation of the machine tool.
Abstract:
A machining assistance method and an apparatus using the same are provided. The machining assistance method comprises following steps. Firstly, a circle correction path is received for driving a platform to perform a circular motion. Next, a driving torque of the server driver driving the platform is obtained. Then, whether the driving torque is changed to 0 is determined; if yes, a first position of the platform is recorded. Then, whether the driving torque is changed to a peak is determined; if yes, a second position of the platform is recorded. After that, the server driver is controlled to drive the platform according to a first position and a second position in a machining process.
Abstract:
A processing path generating method includes the following steps. An image-capturing device is moved to the first position of the region of interest to perform an image-capture on a workpiece, so as to obtain a first image. The image-capturing device is moved to a second position to perform the image-capture on the workpiece, so as to obtain a second image. A first edge characteristic and a second edge characteristic of the workpiece are obtained according to the first image and the second image. Three-dimensional edge information of the workpiece is fitted according to the first edge characteristic and the second edge characteristic. A processing path is generated according to the three-dimensional edge information.
Abstract:
A contour accuracy measuring system and a contour accuracy measuring method are provided. The contour accuracy measuring system captures location coordinate data of shafts of a machine tool. The location coordinate data are calculated to obtain a first true round trajectory on an inclined plane as reference information. The contour accuracy measuring system then adjusts parameters of the locations of the shafts based on the location coordinate data of the shafts of the reference information to generate a second true round trajectory on the inclined plane, so as to get to know whether the locations of the shafts after the parameters are adjusted comply with a standard. Therefore, the overall measurement process can be speeded up by automatically measuring the parameters and automatically testing an operating status.
Abstract:
A machining assistance method and an apparatus using the same are provided. The machining assistance method comprises following steps. Firstly, a circle correction path is received for driving a platform to perform a circular motion. Next, a driving torque of the server driver driving the platform is obtained. Then, whether the driving torque is changed to 0 is determined; if yes, a first position of the platform is recorded. Then, whether the driving torque is changed to a peak is determined; if yes, a second position of the platform is recorded. After that, the server driver is controlled to drive the platform according to a first position and a second position in a machining process.
Abstract:
A cutting tool controller and method of controlling are provided. The method includes providing a swing angle for the cutting tool, obtaining a swing vector of the cutting tool through kinematics calculation according to the swing angle, using the swing vector of the cutting tool to calculate a set of possible solutions of a swaying angle of the cutting tool, selecting a possible solution satisfying an operation condition of the machine from the set of possible solutions, using the selected possible solution to calculate an offset of positions of the cutting tool before and after swaying, so as to generate a compensation vector, calculating required compensation values for three axes of the machine according to the compensation vector, and outputting a control command including the compensation values, such that the cutting tool of the machine or a working table for placing the workpiece thereon of the machine moves correspondingly.