Abstract:
This disclosure provides a radio frequency chip, a signal transceiver, and a communication device. The radio frequency chip includes: a chip; a coupling structure, including: a resonator, where a resonant cavity is formed, and an inner wall of the resonant cavity is made of metal; a redistribution layer, arranged above the resonant cavity and including an redistribution layer (RDL) dielectric layer; a radiator, made of metal, formed into a centro-symmetric shape, arranged on a surface that is of the dielectric layer and that faces the resonator, and accommodated in the resonant cavity; a feeder, where one end of the feeder is connected to the chip, and the other end is inserted into the resonant cavity; a packaging structure, configured to package the chip and cover the redistribution layer, so that a signal generated by the chip can be efficiently coupled to a polymer transmission line.
Abstract:
The present invention provides a coax-waveguide adapter, which improves in-band flatness of a reflection coefficient in a simple way. The coax-waveguide adapter includes: a cavity-shaped waveguide connection component, a coaxial external conductor connected to the cavity-shaped waveguide connection component, and a coaxial internal conductor that is disposed inside the coaxial external conductor along an axial direction of the coaxial external conductor and inserted into the cavity-shaped waveguide connection component, where the coax-waveguide adapter further includes: an electromagnetic parameter adjusting component that is disposed inside a cavity of the cavity-shaped waveguide connection component and used for reducing an effective dielectric constant and an effective magnetic conductivity of the coax-waveguide adapter. According to the coax-waveguide adapter provided in the present invention, an external geometrical shape and geometrical dimension of the coax-waveguide adapter are not changed, an implementation manner is simple and easy, costs are low.
Abstract:
A quantum bit control apparatus includes a first coupling means configured to receive a plurality of frequency-mixed control signals of different frequencies from a first transmission medium, and send the plurality of frequency-mixed control signals of different frequencies to the signal extraction means. A second coupling means is configured to receive local oscillation signals from a second transmission medium, and send the local oscillation signals to the signal extraction means. The frequency-mixed control signals and the local oscillation signals are generated in a first temperature region, and a temperature of the first temperature region is higher than that of the second temperature region. A signal extraction means filters the received frequency-mixed control signals and the received local oscillation signals, and performs down-conversion on the filtered control signals and the filtered local oscillation signals to restore a control signal that is used to manipulate a quantum bit in the quantum chip.
Abstract:
The present invention provides an antenna array, including a first antenna group, a second antenna group, and a transition band, where the transition band is located between the first antenna group and the second antenna group and is connected to the first antenna group and the second antenna group, a height of the transition band is less than or equal to a height of the first antenna group and a height of the second antenna group, the transition band includes a first transition sheet and a second transition sheet, one end of the first transition sheet is connected to one end of the second transition sheet to form the transition band of a V-shaped structure, and the other end of the first transition sheet is connected to the first antenna group. The present invention further provides a phased array system to which the antenna array is applied.
Abstract:
Embodiments of the present disclosure provide a phase calibration method and apparatus, where the apparatus includes a first phase detector and a phase shift control device connected to the first phase detector. The first phase detector is configured to obtain N first signals, compare the N first signals with a reference signal, so as to obtain a phase difference between the reference signal and each first signal in the N first signals, and output the phase difference to the phase shift control device, where N is not less than 2, the N first signals are signals respectively phase-shifted by N phase shifters, and a carrier frequency of the reference signal is the same as a carrier frequency of the N first signals. The phase shift control device is configured to adjust phase shift of the N phase shifters on a one-to-one basis according to the N phase differences.
Abstract:
A phased array system includes at least two traveling wave antennas arranged in parallel, and each traveling wave antenna includes at least two antenna units sequentially connected. A first end of each traveling wave antenna connects to a corresponding first radio frequency channel. The first end of each traveling wave antenna connects to a signal processing module of the phased array system by using the corresponding first radio frequency channel. A phase and/or an amplitude of a signal inputted by the signal processing module from the first end into the traveling wave antenna may be adjusted by adjusting a configuration of the first radio frequency channel.
Abstract:
Embodiments of the present disclosure provide a phase calibration method and apparatus, where the apparatus includes a first phase detector and a phase shift control device connected to the first phase detector. The first phase detector is configured to obtain N first signals, compare the N first signals with a reference signal, so as to obtain a phase difference between the reference signal and each first signal in the N first signals, and output the phase difference to the phase shift control device, where N is not less than 2, the N first signals are signals respectively phase-shifted by N phase shifters, and a carrier frequency of the reference signal is the same as a carrier frequency of the N first signals. The phase shift control device is configured to adjust phase shift of the N phase shifters on a one-to-one basis according to the N phase differences.
Abstract:
The present invention discloses a method for advertising link bandwidth information, comprising: sending a link state advertisement (LSA) message comprising bandwidth information of a link to a plurality of network nodes in a network, wherein the bandwidth information comprises a plurality of link bandwidths and availabilities corresponding to the plurality of link bandwidths respectively, wherein each availability is a time scale that the corresponding link bandwidth is ensured.
Abstract:
Embodiments of the disclosure provide a method for advertising link bandwidth information. The method comprises sending a link state advertisement (LSA) message, which comprises bandwidth information of a link, to a plurality of network nodes in a network. The bandwidth information comprises a plurality of link bandwidths and availabilities corresponding to the plurality of link bandwidths respectively. Each availability is a time scale that the corresponding link bandwidth is ensured.
Abstract:
The present invention provides a method and a device for adjusting a carrier frequency of a multiple-input multiple-output microwave device. The method includes: obtaining, by an indoor unit IDU, a frequency of a radio frequency-reference crystal oscillator and a first frequency multiplication factor of each outdoor unit ODU; selecting, by the indoor unit IDU, one of the frequencies of the radio frequency-reference crystal oscillator as a reference frequency; adjusting, by the indoor unit IDU, a carrier frequency of the multiple-input multiple-output microwave device according to the first frequency multiplication factor and a radio frequency offset between the reference frequency and the frequency of the radio frequency-reference crystal oscillator of each ODU.