Abstract:
This application provides an uplink access method and a device. The method includes: a network device receiving indication information sent by a terminal device when the terminal device goes online, where the indication information is used to trigger the network device to send uplink registration window indication information on a first port; the uplink registration window indication information indicates a registration window location at which the terminal device sends uplink registration information; and the network device sends the uplink registration window indication information on the first port according to the indication information. According to the technical solutions provided in embodiments of this application, in a P2MP working mode, a network device may be prevented from periodically indicating a registration window, thereby reducing resource overhead and power consumption.
Abstract:
The present disclosure provides example data transmission methods and apparatuses. One example method includes obtaining a radio signal by using an input port. Based on a correspondence between an input port and a bearer channel, a bearer channel corresponding to the radio signal is determined. Code Division Multiple Access (CDMA) modulation and carrier modulation on the radio signal are performed according to a codeword and a frequency sub-band corresponding to the bearer channel, to obtain a modulated electrical signal. The modulated electrical signal is then modulated to an optical wavelength corresponding to the bearer channel to obtain a modulated optical signal, and the modulated optical signal is sent to an optical network.
Abstract:
A training resource allocation method and apparatus includes obtaining a training resource block through division for a frequency band within a resource allocation period, determining user equipment eligible to occupy the training resource block, where the user equipment are corresponding to an uplink data time-frequency resource already allocated to the frequency band, and determining, according to at least one of a duration for which user equipment occupies the frequency band within the resource allocation period and a duration of user equipment band from a previous time of occupation of a training resource block in the frequency, from the user equipment eligible to occupy the training resource block, user equipment that occupies the training resource block, and allocating the training resource block to the user equipment.
Abstract:
A framing method and apparatus in a passive optical network (PON) and a system, where the method includes generating a first transmission convergence (TC) frame and a second TC frame separately, wherein a sum of frame lengths of the first and the second TC frame is 125 microseconds (μs), performing bit mapping on the second TC frame to generate a third TC frame, where the bit mapping refers to identifying each bit of the second TC frame using N bits, and sending the first and the second TC frame to an optical network unit (ONU). A line rate corresponding to the second TC frame is lower than 2.488 giga bits per second (Gbps) such that a rate of a receiver on a receiving side is decreased and a bandwidth of the receiver is narrowed, thereby decreasing an optical link loss and increasing an optical power budget.
Abstract:
An uplink signal scheduling method, a processing device, and a system. The method includes when uplink signals sent by at least one transmit device are received, preprocessing the uplink signals, to generate a data over cable service interface specification (DOCSIS) frame, where the DOCSIS frame includes at least two uplink signals, and each uplink signal of the at least two uplink signals corresponds to one uplink wavelength, and when it is detected that a signal conflict exists in the DOCSIS frame, creating at least two signal groups according to the uplink signals, and allocating, to the at least two signal groups, uplink signals that have a same uplink wavelength and cause the signal conflict, and performing scheduling on the uplink signals according to the signal groups that have undergone allocation.
Abstract:
A training resource allocation method and apparatus includes obtaining a training resource block through division for a frequency band within a resource allocation period, determining user equipment eligible to occupy the training resource block, where the user equipment are corresponding to an uplink data time-frequency resource already allocated to the frequency band, and determining, according to at least one of a duration for which user equipment occupies the frequency band within the resource allocation period and a duration of user equipment band from a previous time of occupation of a training resource block in the frequency, from the user equipment eligible to occupy the training resource block, user equipment that occupies the training resource block, and allocating the training resource block to the user equipment.
Abstract:
A method for managing a processor includes: obtaining an online request of a processor of a computer system; collecting lock contention information of the computer system if a lock contention status flag indicates a non-lock thrashing status; determining whether the computer system is in a lock thrashing status according to the lock contention information; and accepting the online request if it is determined that the computer system is in a non-lock thrashing status. By using the management method according to embodiments of the present application, processor performance degradation and a waste of idle processor resources that are caused by the case that the computer system is in a lock thrashing status are prevented, thereby improving utilization efficiency of processor resources and promoting overall performance of the computer system.
Abstract:
A method for migrating memory data of a virtual machine, and a related apparatus, and a cluster system are provided. The method includes: obtaining a data sending request for sending memory data of a first virtual machine, where the request includes an identity of the first virtual machine and a PFN of the memory data that is requested to be sent; querying a correspondence information base according to the identity of the first virtual machine to obtain a correspondence of the first virtual machine; querying the correspondence of the first virtual machine according to the PFN of the memory data that is requested to be sent, so as to obtain a physical memory page address of the memory data; and sending, to a destination physical host by using an RDMA network adapter, memory data stored at the physical memory page address of the memory data.
Abstract:
A dielectric filter, a duplexer, and a communications device are provided. The dielectric filter includes a dielectric body, and a wideband filtering structure and a narrowband filtering structure that are disposed in the dielectric body. The wideband filtering structure includes a groove disposed on a first surface of the dielectric body and configured to adjust a frequency position of a passband of the wideband filtering structure; and at least one first resonator including a through hole penetrating the bottom of the groove and a second surface of the dielectric body; and an open loop located on a bottom surface of the groove and is disposed around an opening of the through hole. The narrowband filtering structure includes at least one second resonator including a blind hole disposed on the second surface of the dielectric body. The first surface and the second surface of the dielectric body are disposed oppositely.
Abstract:
This application provides an example dielectric filter and an example communications device. The dielectric filter includes a dielectric block. At least two resonant through holes that are parallel to each other are provided in the dielectric block. The resonant through hole is a stepped hole. The stepped hole includes a large stepped hole and a small stepped hole that are arranged coaxially and that are in communication. The small stepped hole passes through a first surface of the dielectric block. The large stepped hole passes through a second surface of the dielectric block. A stepped surface is formed between the large stepped hole and the small stepped hole. The surfaces of the dielectric block are covered with conductor layers. The conductor layers cover the surfaces of the dielectric block and inner walls of the large stepped hole and the small stepped hole. A conductor layer of the inner wall of the large stepped hole is short-circuited with a conductor layer of the second surface. A conductor layer of the inner wall of the small stepped hole is short-circuited with a conductor layer of the first surface. A loop gap that does not cover the conductor layers is provided on the stepped surface. The loop gap is arranged around the small stepped hole.