Abstract:
This disclosure describes a dielectric filter and a communications device. In one example, the dielectric filter includes at least two dielectric resonators, a first through-hole is disposed between at least one pair of adjacent dielectric resonators, and the first through-hole is configured to cut a magnetic field between the at least one pair of adjacent dielectric resonators. In some implementations, a magnetic field distribution in the dielectric filter may be cut via the first through-hole, so that a magnetic field distribution area is reduced, and a high-order harmonic wave frequency can be increased, thereby improving a remote suppression capability and meeting the specification requirements.
Abstract:
A resonator, a filter, a duplexer, and a multiplexer are disclosed. In an embodiment a resonator includes a resonant cavity casing having a resonant cavity and an open end, a cover covering the open end and being connected to the resonant cavity casing and a resonance tube located inside the resonant cavity. The resonator further includes a tuning rod disposed inside the resonance tube and a dielectric material located in the resonant cavity, wherein the dielectric material is located in a capacitance area formed between a top of the resonance tube and the cover, wherein the tuning rod is rotatable relative to the dielectric material, and wherein surfaces of the tuning rod and the dielectric material face each other and comprise non-circular structures so that an overlapping of the surfaces is changeable to adjust a frequency when the tuning rod is rotated relative to the dielectric material.
Abstract:
A resonator, a filter, a duplexer, and a multiplexer are disclosed. In an embodiment a resonator includes a resonant cavity casing having a resonant cavity and an open end, a cover covering the open end and being connected to the resonant cavity casing and a resonance tube located inside the resonant cavity. The resonator further includes a tuning rod disposed inside the resonance tube and a dielectric material located in the resonant cavity, wherein the dielectric material is located in a capacitance area formed between a top of the resonance tube and the cover, wherein the tuning rod is rotatable relative to the dielectric material, and wherein surfaces of the tuning rod and the dielectric material face each other and comprise non-circular structures so that an overlapping of the surfaces is changeable to adjust a frequency when the tuning rod is rotated relative to the dielectric material.
Abstract:
A resonator, a filter, a duplexer, a multiplexer, and a communications device that use the resonator, where the resonator includes a resonant cavity body that has a resonant cavity and an open end, a cover that covers the open end and that is connected to the resonant cavity body, and a resonant tube that is located inside the resonant cavity, a medium material is padded in a capacitor area in the resonant cavity and whose dielectric constant is greater than 1, the resonant tube includes a resonant tube body and an elastic structure that is combined with the resonant tube body, and the elastic structure provides elastic pressure in an axial direction of the resonant tube where the resonator may reduce a conductor loss and improve a power capacity, and has relatively low costs.
Abstract:
An example remote radio apparatus is provided, including a body, a mainboard, a mainboard heat sink, a maintenance cavity, an optical module, and an optical module heat sink. The maintenance cavity and the optical module heat sink are integrally connected, while the optical module is mounted on a bottom surface of the optical module heat sink. The maintenance cavity and the optical module heat sink are mounted on a side surface of the body, and the mainboard heat sink is mounted on and covers the mainboard. The mainboard heat sink and the mainboard are installed on a front surface of the body, and the mainboard heat sink and the optical module heat sink are spaced by a preset distance. The temperature of the optical module is controlled within a range required by a specification.
Abstract:
A resonator, a filter, a duplexer, a multiplexer, and a communications device that use the resonator, where the resonator includes a resonant cavity body that has a resonant cavity and an open end, a cover that covers the open end and that is connected to the resonant cavity body, and a resonant tube that is located inside the resonant cavity, a medium material is padded in a capacitor area in the resonant cavity and whose dielectric constant is greater than 1, the resonant tube includes a resonant tube body and an elastic structure that is combined with the resonant tube body, and the elastic structure provides elastic pressure in an axial direction of the resonant tube where the resonator may reduce a conductor loss and improve a power capacity, and has relatively low costs.
Abstract:
A dielectric filter, a duplexer, and a communications device are provided. The dielectric filter includes a dielectric body, and a wideband filtering structure and a narrowband filtering structure that are disposed in the dielectric body. The wideband filtering structure includes a groove disposed on a first surface of the dielectric body and configured to adjust a frequency position of a passband of the wideband filtering structure; and at least one first resonator including a through hole penetrating the bottom of the groove and a second surface of the dielectric body; and an open loop located on a bottom surface of the groove and is disposed around an opening of the through hole. The narrowband filtering structure includes at least one second resonator including a blind hole disposed on the second surface of the dielectric body. The first surface and the second surface of the dielectric body are disposed oppositely.
Abstract:
This application provides an example dielectric filter and an example communications device. The dielectric filter includes a dielectric block. At least two resonant through holes that are parallel to each other are provided in the dielectric block. The resonant through hole is a stepped hole. The stepped hole includes a large stepped hole and a small stepped hole that are arranged coaxially and that are in communication. The small stepped hole passes through a first surface of the dielectric block. The large stepped hole passes through a second surface of the dielectric block. A stepped surface is formed between the large stepped hole and the small stepped hole. The surfaces of the dielectric block are covered with conductor layers. The conductor layers cover the surfaces of the dielectric block and inner walls of the large stepped hole and the small stepped hole. A conductor layer of the inner wall of the large stepped hole is short-circuited with a conductor layer of the second surface. A conductor layer of the inner wall of the small stepped hole is short-circuited with a conductor layer of the first surface. A loop gap that does not cover the conductor layers is provided on the stepped surface. The loop gap is arranged around the small stepped hole.
Abstract:
Embodiments of this application provide a dual-mode resonator, a filter, and a radio frequency unit. The dual-mode resonator includes a cavity and a dual-mode dielectric body coupled to an inner surface of the cavity. The dual-mode dielectric body includes a central part and four components that protrude from the central part, where the four components are disposed opposite to each other in pair and are in a cross shape. A first coupling groove and a second coupling groove are provided on the central part, where an extension direction of the first coupling groove is between two adjacent components, and an extension direction of the second coupling groove is between the other two adjacent components. The widths and/or the depths of the first and the second coupling grooves are different, and the extension direction of the first coupling groove and the extension direction of the second coupling groove are at a preset angle.
Abstract:
This application relates to the field of communications component technologies, and provides a band-stop filter and an electronic device. The band-stop filter includes: a waveguide transmission line, configured to transmit electromagnetic waves; and a plurality of dielectric resonance units, sequentially arranged along an extension track of the waveguide transmission line, and configured to be coupled to the waveguide transmission line, where the dielectric resonance units each include at least one dielectric resonator; the dielectric resonator includes a first dielectric block and a first conductive layer covering an outer surface of the first dielectric block; and a first surface of the first dielectric block has a blind hole, and the first conductive layer covers an inner surface of the blind hole; where a dielectric constant of a material that forms the first dielectric block is greater than 1.