摘要:
A data processing system for executing a plurality of instructions having a prescribed program order comprises a register file, a reorder buffer, and a plurality of functional units. The register file includes a plurality of registers to store data. The reorder buffer includes N buffer locations of which M buffer locations are bypassable and N−M buffer locations are non-bypassable, wherein N and M are integers and N>M. Each functional unit is capable of executing instructions regardless of the prescribed program order. The reorder buffer temporarily stores data corresponding to the plurality of instructions. When data of one of the plurality of instructions to be executed by a corresponding one of the plurality of functions units is temporarily stored in one of the M bypassable buffer locations, the reorder buffer transfers the data in one of the bypassable M buffer locations to the corresponding one of the functional units in order to execute the instruction. The register file also stores data corresponding to retired ones of the plurality of instructions.
摘要:
A processing system is disclosed. The processing system includes at least one cache and at least one scratch pad memory. The system also includes a processor for accessing the at least one cache and at least one scratch pad memory. The at least one scratch pad memory is smaller in size than the at least one cache. The processor accesses the data in the at least one scratch pad memory before accessing the at least one cache to determine if the appropriate data is therein. There are two important features of the present invention. The first feature is that an instruction can be utilized to fill a scratch pad memory with the appropriate data in an efficient manner. The second feature is that once the scratch pad has the appropriate data, it can be accessed more efficiently to retrieve this data within the cache and memory space not needed for this data. This has a particular advantage for frequently used routines, such as a mathematical algorithm to minimize the amount of space utilized in the cache for such routines. Accordingly, the complexity of the cache is not required using the scratch pad memory as well as space within the cache is not utilized.
摘要:
A processing system is disclosed. The processing system includes at least one cache and at least one scratch pad memory. The system also includes a processor for accessing the at least one cache and at least one scratch pad memory. The at least one scratch pad memory is smaller in size than the at least one cache. The processor accesses the data in the at least one scratch pad memory before accessing the at least one cache to determine if the appropriate data is therein. There are two important features of the present invention. The first feature is that an instruction can be utilized to fill a scratch pad memory with the appropriate data in an efficient manner. The second feature is that once the scratch pad has the appropriate data, it can be accessed more efficiently to retrieve this data within the cache and memory space not needed for this data. This has a particular advantage for frequently used routines, such as a mathematical algorithm to minimize the amount of space utilized in the cache for such routines. Accordingly, the complexity of the cache is not required using the scratch pad memory as well as space within the cache is not utilized.
摘要:
A method and system for controlling a program in a processor system is disclosed. The processor system includes processor, a normal memory and a fast memory. The method and system comprises partitioning the program into a performance critical portion and a non-critical portion; and storing the performance critical portion of the program into the fast memory. The method and system further includes storing the non-critical portion in the normal memory, and causing the processor to execute the performance critical portion and non-critical portions at the appropriate time. Accordingly, through the use of the present invention power is conserved in the processing system when executing a program.
摘要:
A register system for a data processing system includes an address encoder that generates an encoded address based on a processor mode identifier and a register identifier and memory comprising 2T−1 unbanked registers. The encoded address identifies one of the 2T−1 unbanked registers associated with one of the P processor modes. The encoded address comprises T bits. The register identifier identifies one of 2T−1 unbanked registers. The processor mode identifier identifies P processor modes, where T and P are integers greater than two.
摘要:
A processing system in accordance with the present invention is disclosed. The processing system comprises a processor and a microcode sequencer coupled to the processor. The microcode sequencer includes a plurality of modules. Each of the modules enables a specific function based upon a selection signal from the processor. A system and method in accordance with the present invention provides for many advantages over conventional systems. First of all, there is an efficient register bank and the hardware is smaller and more efficient than a DSP. Finally, since it is possible to program macro instructions for different applications, it is more flexible than DSP systems. It also is smaller, has a lower gate count and is faster to market because it is software programmable. Unlike RISC or coprocessor type systems, only a single assembler is needed to handle DSP and multimedia instructions. In addition, a large cache memory is not required while having a higher code density for a particular application. Finally, it requires a smaller register file through the general purpose processor than a media processor, and thus context switching is faster. It does not have a big data path as a media processor. It also has higher code density and it is easier to program than a media processor application. Accordingly, a system and method in accordance with the present invention provides significant utility over existing conventional systems.