摘要:
This printing device is provided with a first ink container that contains a first ink; a second ink container that contains a second ink; temperature adjusting units that adjust the temperature of the first ink contained in the first ink container and/or the temperature of the second ink contained in the second ink container; a nozzle that sprays the inks; and a control unit that controls the first temperature adjusting unit and the second temperature adjusting unit.
摘要:
A purpose of the present invention is to provide a temperature history indicator that allows for visual confirmation of whether the temperature is at or below a prescribed temperature as well as simple conversion of this information into data. A temperature history indicator according to the present invention is characterized by being provided with a label layer and a temperature-indicating layer laminated above or below the label layer, wherein the temperature-indicating layer includes a substance having at crystallization starting temperature of 10° C. or lower and a melting point at least 20° C. higher than the crystallization starting temperature.
摘要:
The present invention addresses the problem of providing a temperature sensing body capable of sensing both a temperature increase and a temperature decrease, and having an anti-tampering function. In order to solve said problem, this temperature sensing body is characterized by including: a first ink in which a temperature Ta1 for initiating color disappearance when the temperature rises and a temperature Td1 for initiating color development when the temperature falls are different; and a second ink in which a temperature Ta2 for initiating color disappearance when the temperature rises and a temperature Td2 for initiating color development when the temperature falls are different, wherein the temperature Ta1 for initiating color disappearance, the temperature Td1 for initiating color development, the temperature Ta2 for initiating color disappearance, and the temperature Td2 for initiating color development have the relationship, Td1
摘要:
The present invention provides a coagulation processing method capable of adding a sufficiently-dissolved coagulant aqueous solution to being processed water and materializing high-efficiency coagulation processing, a coagulation processing unit, and a water processing apparatus.A coagulation processing unit includes a coagulant aqueous solution storage tank 1 to have a stirrer 5 and store a coagulant aqueous solution, a particle size distribution measurement device 50 to measure the particle size distribution of the coagulant aqueous solution in the coagulant aqueous solution storage tank 1, a coagulation tank 11 to mix being processed water with an added coagulant aqueous solution and form a coagulation, a coagulation removing section 9 to remove the coagulation from the being processed water containing the coagulation, and a control section 6 to control the stirrer 5 so that a median size in the particle size distribution of the coagulant aqueous solution may be not more than 1.0 μm on the basis of a measured particle size distribution.
摘要:
In order to improve the light extraction efficiency of a light-emitting element, the light-emitting element includes: a light-emitting layer provided between an electrode and a transparent substrate; a particle layer provided between the light-emitting layer and the transparent substrate; and an adhesive layer provided between the light-emitting layer and the particle layer, the particle layer includes particles having a refraction index that is higher than a refraction index of the transparent substrate, the adhesive layer has a refraction index that is higher than the refraction index of the transparent substrate, and the particle layer has an average thickness that is less than an average particle size of the particles.
摘要:
A quality control system includes a control device, an output device, and an input device placed at at least an end point of a distribution channel of articles; the input device includes an input unit for receiving data on a changed environment portion and a communication unit that transmits the data, information about an input location, and an input time to the control device. The control device includes a storage unit for storing the mode of packing of the articles in the distribution channel, a reception unit for receiving the information from the input device, an arithmetic operation unit that calculates the number of articles deviating from the storage environment and estimates the stage of the distribution channel deviating from the storage environment, and a transmission unit for transmitting calculation result to the output device that is provided with a display unit.
摘要:
Provided are a method for treating water and a flocculant used in the method. The method includes the steps of adding a first polymer compound formed by multiply binding a first repeating unit into water to be treated, and adding a second polymer compound formed by multiply binding a second repeating unit into the water. The first repeating unit includes a first linked main chain which constructs a main chain via repeatedly bound one another, and an adsorption site directly or indirectly bound to the first linked main chain so as to adsorb organic compounds contained in the water to be treated. The second repeating unit has a similar structure to the first repeating unit except that the number of carbon atoms in the second linked main chain is different from that in the first linked main chain. The flocculant includes the first and second polymer compounds.
摘要:
To address the problem of providing a temperature history indicator capable of specifying a time when a temperature deviated from a set temperature range, a temperature history indicator according to the present invention is characterized in being provided with a substrate and temperature indicators that irreversibly change color upon deviation from a set temperature range, and in that a plurality of the temperature indicators are provided on the substrate, the temperatures at which the temperature indicators change color a within ±2° C. of each other, and the temperature indicators change color after different amounts of time from deviation from the set temperature range.