Abstract:
An object is to provide a fin integrated type semiconductor device and a method of manufacturing the same, which are provided with a simple structure and good heat dissipation characteristics. The semiconductor device includes: a base plate on which fins arranged in a standing condition are formed on a first main face; an insulating layer formed on a second main face of the base plate, the second main face being opposite to the first main face of the base plate; a circuit pattern fixed to the insulating layer; and a semiconductor element joined to the circuit pattern. The fins are formed with slits that pass through in the thickness direction of the fins.
Abstract:
An object is to provide a fin integrated type semiconductor device and a method of manufacturing the same, which are provided with a simple structure and good heat dissipation characteristics. The semiconductor device includes: a base plate on which fins arranged in a standing condition are formed on a first main face; an insulating layer formed on a second main face of the base plate, the second main face being opposite to the first main face of the base plate; a circuit pattern fixed to the insulating layer; and a semiconductor element joined to the circuit pattern. The fins are formed with slits that pass through in the thickness direction of the fins.
Abstract:
A radiator including: a plurality of radiation fins; and a radiation fin support base having a heater element mounted to one surface thereof and a plurality of parallel fin grooves to which the radiation fins are installed and a projection configured to fix the radiation fin formed to the other surface thereof, wherein a top of the projection pushes one side surface of the radiation fin to push the other side surface of the radiation fin toward a side surface of the fin groove, and wherein the fin groove and the projection are each divided in a plurality of pieces in a longitudinal direction of the fin groove, and each of the divided fin grooves and each of the divided projections have a same length in the longitudinal direction of the fin groove and are paired with each other.
Abstract:
A radiator including: a plurality of radiation fins; and a radiation fin support base having a heater element mounted to one surface thereof and a plurality of parallel fin grooves to which the radiation fins are installed and a projection configured to fix the radiation fin formed to the other surface thereof, wherein a top of the projection pushes one side surface of the radiation fin to push the other side surface of the radiation fin toward a side surface of the fin groove, and wherein the fin groove and the projection are each divided in a plurality of pieces in a longitudinal direction of the fin groove, and each of the divided fin grooves and each of the divided projections have a same length in the longitudinal direction of the fin groove and are paired with each other.
Abstract:
A power semiconductor circuit device and a method for manufacturing the same, both of which are provided with: a base board on which at least a power semiconductor element is mounted; a resin which molds the base board and the power semiconductor element in a state where partial surfaces of the base board, including a base board surface opposite to a surface on which the power semiconductor element is mounted, are exposed; and a heat dissipating fin joined to the base board by a pressing force. A groove is formed in the base board at a portion to be joined to the heat dissipating fin, and the heat dissipating fin is joined by caulking to the groove.
Abstract:
A power semiconductor circuit device and a method for manufacturing the same, both of which are provided with: a base board on which at least a power semiconductor element is mounted; a resin which molds the base board and the power semiconductor element in a state where partial surfaces of the base board, including a base board surface opposite to a surface on which the power semiconductor element is mounted, are exposed; and a heat dissipating fin joined to the base board by a pressing force. A groove is formed in the base board at a portion to be joined to the heat dissipating fin, and the heat dissipating fin is joined by caulking to the groove.
Abstract:
In various embodiments, single-crystal aluminum nitride boules and substrates are formed from the vapor phase with controlled levels of impurities such as carbon. Single-crystal aluminum nitride may be heat treated via quasi-isothermal annealing and controlled cooling to improve its ultraviolet absorption coefficient and/or Urbach energy.
Abstract:
An electromagnetically operated device includes: a moving member of the electromagnetically operated device; a drive coil that is energized to generate magnetic flux for driving the moving member; a permanent magnet provided between a stationary member and the moving member for holding the moving member; and a holding force adjusting member for adjusting the holding force applied to the moving member by the permanent magnet, wherein the holding force adjusting member is placed at a position that will not be included in the main magnetic path of the magnetic flux caused by the drive coil so as to be removable.
Abstract:
An electromagnetically operated switching device according to the present invention includes a pair of electromagnetically operated mechanisms for driving a main circuit contact of a switch via a link mechanism symmetrically arranged with respect to an operational center axis, and a length of a spring retaining plate can be regulated in accordance with a change of a link ratio, which is caused by a design change of the main circuit contact.
Abstract:
An electromagnetically operated switching device according to the present invention includes a pair of electromagnetically operated mechanisms for driving a main circuit contact of a switch via a link mechanism symmetrically arranged with respect to an operational center axis, and a length of a spring retaining plate can be regulated in accordance with a change of a link ratio, which is caused by a design change of the main circuit contact.