摘要:
Lengths of both sides of each end plane of a light-intensity distribution uniformizing element receiving a light flux and having an F-number of 1 are set to ½ of those of a reflecting surface of a reflecting optical-spatial modulator element, position information of uniformed light fluxes output from the light-intensity distribution uniformizing element is Fourier-transformed into diverging angle information indicated by incident light fluxes output from a first group of lenses, a relay deformed diaphragm intercepts an interference component of each incident light flux, which is expected to interfere with an outgoing light flux, to produce asymmetric light fluxes, the asymmetric light fluxes are incident on the reflecting optical-spatial modulator element, a projection lens deformed diaphragm removes stray light from outgoing light fluxes output from the reflecting optical-spatial modulator element, and an image is displayed according to the outgoing light fluxes.
摘要:
A digital mirror dence chip has a substrate, micro-mirrors disposed on the substrate, and a glass cover plate disposed over the micro-mirrors. Each micro-mirror is inclined by +10 degrees or −10 degrees with respect to the substrate to be set to an on-state or an off-state. Incident light produced in a lighting source system is totally reflected in a total internal reflection prism and is incident on the micro-mirrors through the glass cover plate. Outgoing light reflected by micro-minors in the on-state passes through a projection lens and is projected onto a screen to form an image on the screen. Also, outgoing light reflected by micro-mirrors in the off-state passes out of the projection lens. The glass cover plate is not parallel to the substrate. Therefore, light specularly reflected by a surface of the glass cover plate passes out of the projection lens.
摘要:
There is provided such a shape of a light-guiding body that can guide light emitted from a LED while reflecting such light under conditions which satisfy total reflection as much as possible within the light-guiding body, to thereby improve the light intensity on the surface of a document in the shorter axial direction (i.e., the sub-scanning direction), and also, the light-guiding body has such an optimized shape of a light-incoming face that makes it possible to control the angle of light fluxes in the longer axial direction (i.e., the main scanning direction) to thereby illuminate the surface of the document with light having an uniform intensity distribution. Further, a reflecting member is provided at a position opposite the light outgoing face of the light-guiding body so as to improve the efficiency of illuminating an objective image-reading region on the surface of the document.
摘要:
There is provided such a shape of a light-guiding body that can guide light emitted from a LED while reflecting such light under conditions which satisfy total reflection as much as possible within the light-guiding body, to thereby improve the light intensity on the surface of a document in the shorter axial direction (i.e., the sub-scanning direction), and also, the light-guiding body has such an optimized shape of a light-incoming face that makes it possible to control the angle of light fluxes in the longer axial direction (i.e., the main scanning direction) to thereby illuminate the surface of the document with light having an uniform intensity distribution. Further, a reflecting member is provided at a position opposite the light outgoing face of the light-guiding body so as to improve the efficiency of illuminating an objective image-reading region on the surface of the document.
摘要:
A fundamental laser beam is wavelength converted through nonlinear optical crystals by traveling in one direction, sequentially through two nonlinear optical crystals arranged in series. A wavelength-converted laser beam is generated and includes wavelength-converted laser beams having polarized directions differing from each other by angles in a range from 45° to 90°. The two nonlinear optical crystals have crystal orientation axes differing by 45° to 90° when viewed along the optical axis of the laser beam.
摘要:
On a translucent substrate, an insulating film having a refractive index n and an amorphous silicon film are deposited successively. By irradiating the amorphous silicon film with a laser beam having a beam shape of a band shape extending along a length direction with a wavelength λ, a plurality of times from a side of amorphous silicon film facing the insulating film, while an irradiation position of the laser beam is shifted each of the plurality of times in a width direction of the band shape by a distance smaller than a width dimension of the band shape, a polycrystalline silicon film is formed from the amorphous silicon film. Forming the polycrystalline silicon film forms crystal grain boundaries which extend in the width direction and are disposed at a mean spacing measured along the length direction and ranging from (λ/n)×0.95 to (λ/n)×1.05 inclusive, and crystal grain boundaries which, in a region between crystal grain boundaries adjacent to each other and extending in the width direction, extend in the length direction and are disposed at a mean spacing measured along the width direction and ranging from (λ/n)×0.95 to (λ/n)×1.05 inclusive.
摘要:
On a translucent substrate, an insulating film having a refractive index n and an amorphous silicon film are deposited successively. By irradiating the amorphous silicon film with a laser beam having a beam shape of a band shape extending along a length direction with a wavelength λ, a plurality of times from a side of amorphous silicon film facing the insulating film, while an irradiation position of the laser beam is shifted each of the plurality of times in a width direction of the band shape by a distance smaller than a width dimension of the band shape, a polycrystalline silicon film is formed from the amorphous silicon film. Forming the polycrystalline silicon film forms crystal grain boundaries which extend in the width direction and are disposed at a mean spacing measured along the length direction and ranging from (λ/n)×0.95 to (λ/n)×1.05 inclusive, and crystal grain boundaries which, in a region between crystal grain boundaries adjacent to each other and extending in the width direction, extend in the length direction and are disposed at a mean spacing measured along the width direction and ranging from (λ/n)×0.95 to (λ/n)×1.05 inclusive.
摘要:
A method for producing a semiconductor device includes irradiating an amorphous semiconductor film on an insulating material with a pulsed laser beam having a rectangular irradiation area, while scanning in a direction intersecting a longitudinal direction of the irradiation area, thereby forming a first polycrystalline semiconductor film, and irradiating a part of the amorphous semiconductor film with the laser beam, while scanning in a longitudinal direction intersecting the irradiation area, the part superposing the first polycrystalline semiconductor film and being adjacent to the first polycrystalline semiconductor film, thereby forming a second polycrystalline semiconductor film. The laser beam has a wavelength in a range from 390 nm to 640 nm, and the amorphous semiconductor film has a thickness in a range from 60 nm to 100 nm.
摘要:
A method for producing a semiconductor device includes irradiating an amorphous semiconductor film on an insulating material with a pulsed laser beam having a rectangular irradiation area, while scanning in a direction intersecting a longitudinal direction of the irradiation area, thereby forming a first polycrystalline semiconductor film, and irradiating a part of the amorphous semiconductor film with the laser beam, while scanning in a longitudinal direction intersecting the irradiation area, the part superposing the first polycrystalline semiconductor film and being adjacent to the first polycrystalline semiconductor film, thereby forming a second polycrystalline semiconductor film. The laser beam has a wavelength in a range from 390 nm to 640 nm, and the amorphous semiconductor film has a thickness in a range from 60 nm to 100 nm.