摘要:
A body of semiconductor material having a very limited contact region. The contact region is adjacent an emitting surface of the body, is spaced from the sides of the body and extends no more than one-quarter the distance from the emitting surface to a surface opposite the emitting surface. That portion of the body in the vicinity of the contact region is the active region of the diode. The smaller the active region, relative to the total size of the body, the less the internal absorption of generated light in the body. A groove can be provided across the body adjacent to that end of the contact region opposite from the emitting surface. In the groove is a metallic layer which functions as a light reflector. Any light generated in the body striking the metallic surface may be reflected out to the emitting surface of the body.
摘要:
A body of semiconductor material of an injection laser device, capable of operating at a power level up to a few milliwatts per micrometer of emitting width, has two opposed facet surfaces. On at least one of the facet surfaces is a protection layer of an insulating material having an optical thickness equal to approximately one-half the vacuum wavelength of the optical radiation emitted by the device.
摘要:
The P type conductivity layer or layers of an electroluminescent device includes zinc as the primary conductivity modifier, and germanium as the secondary conductivity modifier. The combination of zinc and germanium provide an electroluminescent device having improved reliability. In the method of fabricating the P type conductivity layer, the zinc and germanium are simultaneously introduced into the layer during deposition of the layer.
摘要:
A body of semiconductor material of an electroluminescent device is on a gallium arsenide substrate of N type conductivity. The body includes a first region of N type conductivity aluminum gallium arsenide contiguous to a surface of the substrate and a second region of silicon doped P type gallium arsenide on the first region and spaced from the substrate. The P-N junction between the first and second regions is a heterojunction, and is the only heterojunction with the second region. The second region is of a thickness, extending from the P-N junction, in the range of 50 to 200 micrometers. The electroluminescent device is capable of transient response time of 0.2 microseconds or less.
摘要:
An electrooptical device, such as a semiconductor laser, and an optical fiber are packaged together in light coupling alignment using an electrolytic technique that avoids heat-induced stresses that commonly result from joining methods that employ welding, soldering, or catalytic adhesive compositions. The particular technique of this invention also avoids the need to encapsulate the electrooptical device within an index matching gel to protect it from the electrolytic plating solution thereby enabling optical devices such as lenses, isolators, filters, etc, to be incorporated in the package. The electrooptical device is mounted onto a common metallic base and the optical device is mounted within the bore of a tubular metallic support member. This support member is affixed to the base by means of nodes of a flexible conductive gel and is positioned relative to the electrooptical device for maximum light coupling between the device and the optical fiber within the support member. A non-metallic bottomless container is disposed on the base over the support member and the nodes of conductive gel (but not over the electrooptical device) to form a liquid-tight interior region for containing a low-stress electrolytic plating solution. The base, the nodes of conductive gel and the portion of the fiber support member within the container form the cathode in a plating circuit and are plated together to fix the alignment of the device and the fiber at its optimum coupling position.
摘要:
A method for reducing the diameter of the end of an optical fiber while leaving the fiber end flat or slightly concave so that a lens can be formed thereon. The fiber end is etched in a solution of aqueous hydrofluoric acid to which is added ammonium fluoride, ammonium bifluoride or a combination thereof.
摘要:
A method of removing the protective polymeric layers of an optical fiber comprises contacting the fiber with a mixture of sulphuric acid and hydrogen peroxide to remove the outer protective coating followed by contacting the remaining protective coating with concentrated sulphuric acid.
摘要:
Means for coupling an electrooptical device, such as a semiconductor laser, to an optical fiber avoids heat-induced stresses that commonly result from joining methods employing welding, soldering, or catalytic adhesive compositions. In this invention, the electrooptical device and fiber are firmly mounted within separate elements, such as copper tubes, by means of potting compound or the like, and after close end-to-end supported alignment of the device and fiber elements to obtain optimum light coupling, the assemblage is immersed in an electrolytic plating solution. Plating current is then applied and maintained until a sufficiently strong layer of plating metal encompasses the tubular elements and thereby rigidly fixes the alignment of the device and fiber end at its optimum position. Since the plating operation proceeds in a substantially isothermic environment, there is no misaligning stress introduced which would otherwise degrade the coupling efficiency.
摘要:
An electrical contact having low electrical resistance and low optical absorption is fabricated on a semiconductor electroluminescent article of III-V semiconductor material having a P-type region and an N-type region contiguous to each other, with a P-N junction therebetween. In the method of forming the contact, Zn is diffused into a surface of the P-type region opposite the PN junction. Then, a layer of gold is evaporated onto the Zn diffused surface while the device is at a temperature of approximately 400.degree.C.
摘要:
Gold is deposited onto a heated surface of N type semiconductor material composed of either gallium arsenide, gallium phosphide, aluminum gallium arsenide or aluminum gallium phosphide. The surface of the gallium compound is cooled to room temperature whereupon tin is deposited onto the gold. The semiconductor material is then reheated until the tin alloys with and through the gold into the material. A solderable surface may be applied to the semiconductor material by applying a film nickel and then a film of gold onto the alloyed surface.