摘要:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≥350 (%/nm), and has a maximum height (Rmax)≤1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
摘要:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.