Abstract:
To a biomolecule measuring apparatus, a semiconductor sensor for detecting ions generated by a reaction between a biomolecular sample and a reagent is set. The semiconductor sensor has a plurality of cells which are arranged on a semiconductor substrate, and each of which detects ions, and a plurality of readout wires. Each of the plurality of cells has an ISFET which has a floating gate and which detects ions, a first MOSFET M2 for amplifying an output from the ISFET, and a second MOSFET M3 which selectively transmits an output from the first MOSFET to a corresponding readout wire R1. Each of the plurality of cells is provided with a third MOSFET M1 which generates hot electrons in the ISFET and which injects a charge to the floating gate of the ISFET. Here, the second MOSFET and the third MOSFET are separately controlled.
Abstract:
The purpose of the present invention is to control, with a simple structure and high accuracy, irradiation of excitation light to a multi-nanopore substrate without interrupting a measurement. Irradiation of excitation light is performed concurrently to at least one nanopore and at least one reference object on a substrate mounted in an observation container 103. A position irradiated with the excitation light in a measurement sample is calculated on the basis of a signal generated from the reference object detected by a detector 109, and the measurement and a fixed position control is performed concurrently by performing measurement of the measurement object while a drive control part 115 controlling the position of the irradiation of the excitation light to the measurement sample on the basis of the calculation result, whereby an analysis of the measurement sample can be performed in a short time.
Abstract:
While an insulating film having a near-field light generating element placed thereon is being irradiated with light in an electrolytic solution, or after the film that has been irradiated with light is disposed in the electrolytic solution, a first voltage is applied between the two electrodes installed in the electrolytic solution across the film, a second voltage is then applied between the two electrodes, and a value of a current that flows between the two electrodes due to the application of the second voltage is detected. This procedure is stopped when the current value reaches or exceeds a pre-set threshold value, whereby a hole is formed at a desired location in the thin-film.
Abstract:
Provided is a biomolecule measuring device capable of effectively reducing measurement noise occurring when measuring a biomolecule sample using a semiconductor sensor. This biomolecule measuring device generates a trigger to react a sample with a reagent after starting to send the reagent onto the semiconductor sensor that detects ion concentration (see FIG. 7).
Abstract:
The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
Abstract:
The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
Abstract:
In order to reduce the cost of producing a spot array substrate and reduce the cost of nucleic acid polymer analysis, a spot array substrate is used which is produced by preparing a resin substrate 402 having a surface on which an uneven pattern is formed and a plurality of bead sitting positions set in a two-dimensional array within the uneven pattern, and loading surface-modified beads onto the bead sitting positions of the resin substrate.
Abstract:
The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor, a lower electrode placed within a processing chamber of the vacuum reactor and having a wafer to be etched mounted on the upper surface thereof, bias supplying units and for supplying high frequency power for forming a bias potential to the lower electrode, a gas supply means for feeding reactive gas into the processing chamber, an electric field supplying means through for supplying a magnetic field for generating plasma in the processing chamber, and a control unit for controlling the distribution of ion energy in the plasma being incident on the wafer via the high frequency power.
Abstract:
The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
Abstract:
To a biomolecule measuring apparatus, a semiconductor sensor for detecting ions generated by a reaction between a biomolecular sample and a reagent is set. The semiconductor sensor has a plurality of cells which are arranged on a semiconductor substrate, and each of which detects ions, and a plurality of readout wires. Each of the plurality of cells has an ISFET which has a floating gate and which detects ions, a first MOSFET M2 for amplifying an output from the ISFET, and a second MOSFET M3 which selectively transmits an output from the first MOSFET to a corresponding readout wire R1. Each of the plurality of cells is provided with a third MOSFET M1 which generates hot electrons in the ISFET and which injects a charge to the floating gate of the ISFET. Here, the second MOSFET and the third MOSFET are separately controlled.