摘要:
A read head is provided with a scissors sensor. The read head may include a bottom magnetic shield, and a first non-magnetic seed layer, a magnetic seed layer, a second non-magnetic seed layer, an antiferromagnetic layer, a coupling layer, a first free magnetic layer, a spacer layer, and a second free magnetic layer positioned above the bottom magnetic shield, in this order. A pair of magnetic side shield layers may be positioned on respective sides of the second free magnetic layer.
摘要:
A scissor type magnetic sensor for magnetic data recording having a flux closure magnetic side shield structure. The magnetic sensor has a magnetic side shield structure that includes a non-magnetic layer within a magnetic material layer, with the non-magnetic layer being removed from the sensor stack so as to define upper and lower magnetic portions of the magnetic structure that are separated from one another at a region away from the sensor stack. The upper and lower magnetic portions are connected with one another in a region near the sensor stack so as to magnetic flux closure structure. The novel magnetic side shield structure provides net neutral magnetization that does not provide an inadvertent biasing to the magnetic free layers of the magnetic sensor.
摘要:
In one embodiment, a method for forming a sensor includes forming a first free layer, forming a barrier layer above the first free layer, forming a second free layer above the barrier layer, the first free layer, the barrier layer, and the second free layer together forming a scissor sensor stack, forming a soft bias layer behind the scissor sensor stack in an element height direction, the soft bias layer including a soft magnetic material, and forming a hard bias layer, at least a portion thereof being positioned behind the soft bias layer in the element height direction, the hard bias layer including a hard magnetic material having an initialization magnetization that is perpendicular to a media-facing surface of the sensor to provide unidirectional anisotropy to the soft bias layer.
摘要:
According to one embodiment, a magnetic sensor includes a lower scissor free layer, and an upper scissor free layer above the lower scissor free layer in a track direction, where at least one of the scissor free layers has a generally T-shaped periphery. According to another embodiment, a method includes forming a lower scissor free layer, and forming an upper scissor free layer above the lower scissor free layer in a track direction, where at least one of the one of the scissor free layers has a generally T-shaped periphery.
摘要:
In one embodiment, an apparatus includes a scissor sensor stack, a soft bias layer positioned behind the scissor sensor stack in an element height direction, the soft bias layer including a soft magnetic material, and a hard bias layer, at least a portion thereof being positioned behind the soft bias layer in the element height direction, the hard bias layer including a hard magnetic material having an initialization magnetization that is perpendicular to a media-facing surface of the apparatus to provide unidirectional anisotropy to the soft bias layer, wherein the scissor sensor stack includes a first free layer, a second free layer positioned above the first free layer, and a barrier layer positioned between the first free layer and the second free layer. Other apparatuses and methods for forming such apparatuses are described in more embodiments.
摘要:
A magnetic read sensor having a magnetic seed layer, a pinned layer structure formed over the magnetic seed layer, a non-magnetic barrier or spacer layer formed over the pinned layer structure and a magnetic free layer structure formed over the non-magnetic barrier or spacer layer. The pinned layer has a stripe height (measured from the media facing surface) that is greater than a stripe height of the magnetic free layer structure. In addition, the magnetic seed layer structure has a stripe height (also measured from the media facing surface) that is greater than the stripe height of the magnetic pinned layer structure and the magnetic free layer structure. The stripe height of the magnetic seed layer structure can be controlled independently of the stripe heights of the magnetic pinned layer structure and the magnetic free layer structure.
摘要:
A scissor type magnetic sensor having an improved back edge bias structure. The back edge bias structure extends beyond the sides of the sensor stack for improved bias moment and is formed on a flat topography that provide for improved magnetic biasing. The sensor is formed by a method that includes first defining a sensor width and then depositing a multi-layer insulation layer that includes a dielectric layer that is resistant to ion milling and the depositing a fill layer over the dielectric layer that is removable by ion milling. After the multi-layer insulation layer has been deposited the back edge (i.e. stripe height) of the sensor is formed by masking and ion milling. This ion milling removes portions of the non-magnetic, electrically insulating fill layer that extend beyond the stripe height and beyond the sides of the sensor, leaving the dielectric layer there-beneath.
摘要:
A magnetic sensor having a novel pinning structure resulting in a greatly reduced gap spacing. The sensor has a magnetic free layer structure that extends to a first stripe height and a magnetic pinned layer structure that extends to a second stripe height that is longer than the first stripe high. A layer of anti-ferromagnetic material is formed over the pinned layer structure in the region beyond the first stripe height location. In this way, the antiferromagnetic layer is between the pinned layer and the second or upper shield and does not contribute to gap spacing.
摘要:
A magnetic read sensor having an extended pinned layer structure and also having an extended free layer structure. The extended pinned layer structure and extended free layer structure both extend beyond the strip height of the free layer of the sensor to provide improved pinning strength as well as improved free layer biasing reliability and bias field strength.
摘要:
A method of manufacturing a magnetic sensor having a hard bias structure located at a back edge of the sensor. The method forms an electrical lapping guide that is compatible for use with such a sensor having a back edge hard bias structure and which can accurately determine a termination point for a lapping operation that forms an air bearing surface of the slider and determines the sensor stripe height.