Abstract:
A system, according to one embodiment, includes: a main pole; and a trailing shield. A first distance D1 is defined in a track direction between the trailing shield and a pole tip region of the main pole; and a second distance D2 is defined in the track direction between the trailing shield and a second region of the main pole located behind the pole tip region, where D2 is greater than D1. Other systems, and methods are described in additional embodiments.
Abstract:
A system, according to one embodiment, includes: a main pole; and a trailing shield. A first distance D1 is defined in a track direction between the trailing shield and a pole tip region of the main pole; and a second distance D2 is defined in the track direction between the trailing shield and a second region of the main pole located behind the pole tip region, where D2 is greater than D1. Other systems, and methods are described in additional embodiments.
Abstract:
A scissor type magnetic sensor for magnetic data recording having a flux closure magnetic side shield structure. The magnetic sensor has a magnetic side shield structure that includes a non-magnetic layer within a magnetic material layer, with the non-magnetic layer being removed from the sensor stack so as to define upper and lower magnetic portions of the magnetic structure that are separated from one another at a region away from the sensor stack. The upper and lower magnetic portions are connected with one another in a region near the sensor stack so as to magnetic flux closure structure. The novel magnetic side shield structure provides net neutral magnetization that does not provide an inadvertent biasing to the magnetic free layers of the magnetic sensor.
Abstract:
A magnetic write head having trailing magnetic shield and a trailing magnetic return pole that are recessed from the media facing surface. The magnetic write head includes a write pole, a trailing shield that is separated from the write pole by a non-magnetic trailing gap layer and a trailing magnetic return pole that is connected with the trailing magnetic shield. The trailing magnetic return pole and at least a portion of the trailing magnetic shield have surfaces that face the media facing surface. The surface of the trailing magnetic return pole and at least a portion of the surface of the trailing magnetic shield taper away from the media facing surface. This recess prevents far track interference by preventing stray magnetic fields from the trailing magnetic shield and trailing magnetic return pole from inadvertently affecting the magnetic media.
Abstract:
A magnetic write head having trailing magnetic shield and a trailing magnetic return pole that are recessed from the media facing surface. The magnetic write head includes a write pole, a trailing shield that is separated from the write pole by a non-magnetic trailing gap layer and a trailing magnetic return pole that is connected with the trailing magnetic shield. The trailing magnetic return pole and at least a portion of the trailing magnetic shield have surfaces that face the media facing surface. The surface of the trailing magnetic return pole and at least a portion of the surface of the trailing magnetic shield taper away from the media facing surface. This recess prevents far track interference by preventing stray magnetic fields from the trailing magnetic shield and trailing magnetic return pole from inadvertently affecting the magnetic media.
Abstract:
A scissor type magnetic sensor for magnetic data recording having a flux closure magnetic side shield structure. The magnetic sensor has a magnetic side shield structure that includes a non-magnetic layer within a magnetic material layer, with the non-magnetic layer being removed from the sensor stack so as to define upper and lower magnetic portions of the magnetic structure that are separated from one another at a region away from the sensor stack. The upper and lower magnetic portions are connected with one another in a region near the sensor stack so as to magnetic flux closure structure. The novel magnetic side shield structure provides net neutral magnetization that does not provide an inadvertent biasing to the magnetic free layers of the magnetic sensor.
Abstract:
Ionized physical vapor deposition (IPVD) is used to form a magnetic recording disk drive write head main pole with thin side gap layers and a thicker leading gap layer. A metal or metal alloy is formed by IPVD in a trench with a bottom and outwardly sloping sidewalls. An optional Ru seed layer is deposited on the metal or metal alloy. This is followed by atomic layer deposition (ALD) of a Ru smoothing layer. If the IPVD results in metal or metal alloy side gap layers with a rough surface, the ALD process is modified, resulting in a smooth Ru smoothing layer that does not replicate the rough surface of the side gap layers.
Abstract:
An apparatus according to one embodiment includes a read sensor. The read sensor has an antiferromagnetic layer (AFM), a first antiparallel magnetic layer (AP1 ) positioned above the AFM layer in a first direction oriented along a media-facing surface and perpendicular to a track width direction, a non-magnetic layer positioned above the AP1 in the first direction, a second antiparallel magnetic layer (AP2) positioned above the non-magnetic layer in the first direction, a harrier layer positioned above the AP2 in the first direction, and a free layer positioned above the barrier layer in the first direction. A soft bias layer is positioned behind at least a portion of the free layer in an element height direction normal to the media-facing surface, the soft bias layer including a soft magnetic material configured to compensate for a magnetic coupling of the free layer with the AP2.
Abstract:
According to one embodiment, a system includes a leading magnetic shield, a first sensor structure above the leading magnetic shield, a first middle magnetic shield above the first sensor structure, a nonmagnetic spacer above the first middle magnetic shield, a second middle magnetic shield above the nonmagnetic spacer, a second sensor structure above the second middle magnetic shield, and a trailing magnetic shield above the second sensor structure. Other systems, methods, and computer program products are described in additional embodiments.
Abstract:
In one embodiment, a read sensor includes an antiferromagnetic (AFM) pinning layer, the AFM pinning layer being recessed from a media-facing surface in an element height direction to a first height, a first antiparallel pinned multilayer (AP1) positioned above the AFM pinning layer and extending beyond the first height to the media-facing surface, a second antiparallel pinned layer (AP2) positioned above the AP1 and extending beyond the first height to the media-facing surface, and a free layer positioned at the media-facing surface above the AP2 and extending from the media-facing surface in the element height direction to a second height, wherein the element height direction is perpendicular to the media-facing surface, wherein the AP1 and the AP2 are not recessed from the media-facing surface, and wherein the AFM, the AP1, and the AP2 extend beyond the free layer in the element height direction beyond the second height.