Abstract:
A distance sensor includes: a light receiving area including a first longer side and a second longer side; a photo gate electrode arranged on the light receiving area; a plurality of signal charge collection regions along the first longer side; a plurality of signal charge collection regions along the second longer side; a plurality of transfer electrodes along the first longer side provided with charge transfer signals having mutually-differing phases; a plurality of transfer electrodes along the second longer side provided with the charge transfer signals having mutually-differing phases; and a potential adjusting means positioned between the first and second longer sides and raises potential of an area extending in a direction in which the first and second longer sides extend to be higher than potential of side areas of the first and second longer sides.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer, disposed on the substrate, for generating ultraviolet light in response to an electron beam. The light-emitting layer includes a powdery or granular oxide crystal containing Lu and Si doped with an activator (e.g., Pr:LPS and Pr:LSO crystals).
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light in response to an electron beam. The light-emitting layer includes a polycrystalline film constituted by an oxide polycrystal containing Lu and Si doped with an activator or a polycrystalline film constituted by a rare-earth-containing aluminum garnet polycrystal doped with an activator.
Abstract:
A solid-state imaging device includes a photodetecting unit and a signal readout unit, and further includes a control unit controlling an operation of each of the photodetecting unit and the signal readout unit. The photodetecting unit includes M×N pixels on a first principal surface of a semiconductor substrate having the first principal surface and a second principal surface opposite to each other. Each pixel includes a plurality of buried photodiodes, a capacitance portion a plurality of transfer switches, and an output switch.
Abstract:
The present embodiment relates to a distance sensor configured to inject an equal amount of current into storage nodes coupled, respectively, to charge collection regions where charges of a photosensitive region is distributed by driving of first and second transfer electrodes and obtain a distance to an object based on difference information on charge amounts of the respective storage nodes. Saturation caused by disturbance light of each storage node is avoided by injecting the equal amount of current to each storage node, and the difference information on the charge amounts of the respective storage nodes, which is not easily affected by the current injection, is obtained by driving the first and second transfer electrodes according to the plurality of frames representing the electrode drive pattern, respectively.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light UV in response to an electron beam. The light-emitting layer includes a powdery or granular rare-earth-containing aluminum garnet crystal doped with an activator. The light-emitting layer has an ultraviolet light emission peak wavelength of 300 nm or shorter.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light in response to an electron beam. The light-emitting layer includes a polycrystalline film constituted by an oxide polycrystal containing Lu and Si doped with an activator or a polycrystalline film constituted by a rare-earth-containing aluminum garnet polycrystal doped with an activator.
Abstract:
A distance sensor includes: a light receiving area including a first longer side and a second longer side; a photo gate electrode arranged on the light receiving area; a plurality of signal charge collection regions along the first longer side; a plurality of signal charge collection regions along the second longer side; a plurality of transfer electrodes along the first longer side provided with charge transfer signals having mutually-differing phases; a plurality of transfer electrodes along the second longer side provided with the charge transfer signals having mutually-differing phases; and a potential adjusting means positioned between the first and second longer sides and raises potential of an area extending in a direction in which the first and second longer sides extend to be higher than potential of side areas of the first and second longer sides.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer, disposed on the substrate, for generating ultraviolet light in response to an electron beam. The light-emitting layer includes a powdery or granular oxide crystal containing Lu and Si doped with an activator (e.g., Pr:LPS and Pr:LSO crystals).
Abstract:
The range image sensor is a range image sensor which is provided on a semiconductor substrate with an imaging region composed of a plurality of two-dimensionally arranged units (pixel P), thereby obtaining a range image on the basis of charge quantities QL, QR output from the units. One of the units is provided with a charge generating region (region outside a transfer electrode 5) where charges are generated in response to incident light, at least two semiconductor regions 3 which are arranged spatially apart to collect charges from the charge generating region, and a transfer electrode 5 which is installed at each periphery of the semiconductor region 3, given a charge transfer signal different in phase, and surrounding the semiconductor region 3.