Abstract:
A system and machine-implemented method for providing one or more photos associated with a point of interest on a map, the method including receiving an indication of a request from a user to view photos associated with a point of interest on a map, identifying a set of photos associated with the point of interest, wherein the photos comprise at least one of photos taken from the point of interest or photos that depict at least part of the point of interest, ranking the photos within the set of photos according to ranking criteria, wherein the ranking criteria comprises one or more of map context, photo quality, photo type or user request information and providing one or more photos of the set of photos to the user according to the ranking.
Abstract:
The technology relates to navigating imagery that is organized into clusters based on common patterns exhibited when imagery is captured. For example, a set of captured images which satisfy a predetermined pattern may be determined. The images in the set of set of captured images may be grouped into one or more clusters according to the predetermined pattern. A request to display a first cluster of the one or more clusters may be received and, in response, a first captured image from the requested first cluster may be selected. The selected first captured image may then be displayed.
Abstract:
Methods, systems, and articles of manufacture for generating a panoramic image of a long scene, are disclosed. These include, fitting a plurality of planes to 3D points associated with input images of portions of the long scene, where one or more respective planes are fitted to each of a ground surface, a dominant surface, and at least one of one or more foreground objects and one or more background objects in the long scene, and where distances from the 3D points to the fitted planes are substantially minimized. These also include, selecting, for respective one or more pixels in the panoramic image of the long scene, one of the input images and one of the fitted planes such that a distance is substantially minimized from the selected one of the fitted planes to a surface corresponding to the respective one or more pixels and occlusion of the respective one or more pixels is reduced in the selected one of the input images; and stitching the panoramic image of the long scene by projecting, for the respective one or more pixels in the panoramic image of the long scene, the selected one of the input images using the selected one of the fitted planes into the virtual camera.
Abstract:
The technology relates to navigating imagery that is organized into clusters based on common patterns exhibited when imagery is captured. For example, a set of captured images which satisfy a predetermined pattern may be determined. The images in the set of set of captured images may be grouped into one or more clusters according to the predetermined pattern. A request to display a first cluster of the one or more clusters may be received and, in response, a first captured image from the requested first cluster may be selected. The selected first captured image may then be displayed.
Abstract:
The technology relates to navigating imagery that is organized into clusters based on common patterns exhibited when imagery is captured. For example, a set of captured images which satisfy a predetermined pattern may be determined. The images in the set of set of captured images may be grouped into one or more clusters according to the predetermined pattern. A request to display a first cluster of the one or more clusters may be received and, in response, a first captured image from the requested first cluster may be selected. The selected first captured image may then be displayed.
Abstract:
Aspects of the disclosure relate to generating a sequence of images or other visual representations associated with an entity, otherwise known as a semantic image navigation experience. After an entity is selected, a set of sub-entities may be identified. Each sub-entity in the set has a containment relationship with the selected entity as well as at least one associated landmark and one associated pre-stored navigation experience. Then, a ranking order of the sub-entities in the set may be determined based on characteristics of each entity. Based on the determined ranking order, a subset of sub-entities may be selected. A semantic image navigation experience for the selected entity may then be generated using the pre-stored navigation experiences associated with the subset of sub-entities.
Abstract:
The technology relates to navigating imagery that is organized into clusters based on common patterns exhibited when imagery is captured. For example, a set of captured images which satisfy a predetermined pattern may be determined. The images in the set of set of captured images may be grouped into one or more clusters according to the predetermined pattern. A request to display a first cluster of the one or more clusters may be received and, in response, a first captured image from the requested first cluster may be selected. The selected first captured image may then be displayed.
Abstract:
Aspects of the disclosure relate to providing users with sequences of images of physical locations over time or time-lapses. In order to do so, a set of images of a physical location may be identified. From the set of images, a representative image may be selected. The set may then be filtered by comparing the other images in the set to the representative image. The images in the filtered set may then be aligned to the representative image. From this set, a time-lapsed sequence of images may be generated, and the amount of change in the time-lapsed sequence of images may be determined. At the request of a user device for a time-lapsed image representation of the specified physical location, the generated time-lapsed sequence of images may be provided.
Abstract:
Methods, systems, and articles of manufacture for generating a panoramic image of a long scene, are disclosed. These include, fitting a plurality of planes to 3D points associated with input images of portions of the long scene, where one or more respective planes are fitted to each of a ground surface, a dominant surface, and at least one of one or more foreground objects and one or more background objects in the long scene, and where distances from the 3D points to the fitted planes are substantially minimized. These also include, selecting, for respective one or more pixels in the panoramic image of the long scene, one of the input images and one of the fitted planes such that a distance is substantially minimized from the selected one of the fitted planes to a surface corresponding to the respective one or more pixels and occlusion of the respective one or more pixels is reduced in the selected one of the input images; and stitching the panoramic image of the long scene by projecting, for the respective one or more pixels in the panoramic image of the long scene, the selected one of the input images using the selected one of the fitted planes into the virtual camera.