Abstract:
Maps are created that display representations of GPS data generated from a plurality of GPS devices. The GPS data received from the GPS devices is embodied as a representation having descriptive features that visually indicate the location, direction of travel, and speed of travel of the GPS device, and the representation is associated with a road segment on the map. The display of the GPS data from a plurality of GPS devices can be used for editing information about roads on maps and determining preferred routes.
Abstract:
An exemplary method includes prompting a user to capture video data at a location. The location is associated with navigation directions for the user. Information representing visual orientation and positioning information associated with the captured video data is received by one or more computing devices, and a stored data model representing a 3D geometry depicting objects associated with the location is accessed. Between corresponding images from the captured video data and projections of the 3D geometry, one or more candidate change regions are detected. Each candidate change region indicates an area of visual difference between the captured video data and projections. When it is detected that a count of the one or more candidate change regions is below a threshold, the stored model data is updated with at least part of the captured video data based on the visual orientation and positioning information associated with the captured video data.
Abstract:
The disclosed subject matter relates to computer implemented methods for generating an exterior geometry of a building based on a corresponding collection of interior geometry. In one aspect, a method includes receiving a collection of interior geometry data of a building. The interior geometry data of the building corresponds to one or more levels. Each of the level(s) is associated with a corresponding vertical span, and to one or more 2-D section polygons. The method further includes extruding the 2-D section polygons into 2.5-D section polygons, by assigning to each of the 2-D section polygons, the vertical span associated with the level(s) to which the 2-D section polygons correspond. The method further includes constructing a 2.5-D merged polygon set based on the extruded 2.5-D section polygons. The outer shell of the 2.5-D merged polygon set corresponds to an exterior geometry corresponding to the building.
Abstract:
A map editing system for visually indicating the location of GPS devices on a map and identifying paths from the map. GPS data is received from a plurality of GPS devices. The data is filtered based parameters including the speed of the GPS devices. The filtered GPS data is displayed on a map using representations that visually indicate the location of the GPS devices that the data was received from. The representations can then be used for identifying and creating new paths on the map.
Abstract:
An exemplary method includes prompting a user to capture video data at a location. The location is associated with navigation directions for the user. Information representing visual orientation and positioning information associated with the captured video data is received by one or more computing devices, and a stored data model representing a 3D geometry depicting objects associated with the location is accessed. Between corresponding images from the captured video data and projections of the 3D geometry, one or more candidate change regions are detected. Each candidate change region indicates an area of visual difference between the captured video data and projections. When it is detected that a count of the one or more candidate change regions is below a threshold, the stored model data is updated with at least part of the captured video data based on the visual orientation and positioning information associated with the captured video data.
Abstract:
Aspects of the disclosure relate generally to localizing mobile devices. In one example, a first location method associated with a first accuracy value may be used to estimate a location of the mobile device. A confidence circle indicative of a level of confidence in the estimation of the location is calculated. The confidence circle may be displayed on a mobile device. When other location methods become available, the size of the displayed confidence circle may be expanded based on information from an accelerometer of the client device or the accuracy of the other available location methods. This may be especially useful when the mobile device is transitioning between areas which are associated with different location methods that may be more or less accurate.
Abstract:
Aspects of the disclosure relate generally to localizing mobile devices. In one example, a first location method associated with a first accuracy value may be used to estimate a location of the mobile device. A confidence circle indicative of a level of confidence in the estimation of the location is calculated. The confidence circle may be displayed on a mobile device. When other location methods become available, the size of the displayed confidence circle may be expanded based on information from an accelerometer of the client device or the accuracy of the other available location methods. This may be especially useful when the mobile device is transitioning between areas which are associated with different location methods that may be more or less accurate.
Abstract:
An exemplary method includes prompting a user to capture video data at a location. The location is associated with navigation directions for the user. Information representing visual orientation and positioning information associated with the captured video data is received by one or more computing devices, and a stored data model representing a 3D geometry depicting objects associated with the location is accessed. Between corresponding images from the captured video data and projections of the 3D geometry, one or more candidate change regions are detected. Each candidate change region indicates an area of visual difference between the captured video data and projections. When it is detected that a count of the one or more candidate change regions is below a threshold, the stored model data is updated with at least part of the captured video data based on the visual orientation and positioning information associated with the captured video data.
Abstract:
A system and method is provided for displaying a transition between a map and a street level image. In one aspect, the display on a mobile device transitions from a top-down view of a map to a street-level view of an image, such as a panoramic image, such that the mobile device uses the currently stored map image to perform a tilt and zoom transition.
Abstract:
The present technology proposes techniques for managing indoor geolocation conversions based on a user's intent in an indoor location. An advertiser may determine the intent of a user of a mobile device and transmit advertisements to the mobile device related to the determined intent. The intent may be determined based on events that include a location of the mobile device, network browsing history, and a transaction made using the mobile device. The advertisement may provide the user with directions to an item based on location information from the mobile device. The advertisements may also load balance geolocation conversions in order to manage a number of users at a particular location.