Abstract:
An active filter circuit includes an inductance-capacitance (LC) circuit (110) for wireless frequency input, a bi-directional mixer (120) and a filter impedance (130) series-coupled across at least part of the LC circuit (110), and another mixer (420) coupled to at least some portion of the LC circuit. Other circuits, processes, receivers, transmitters and transceivers are disclosed.
Abstract:
An active filter circuit includes an inductance-capacitance (LC) circuit (110) for wireless frequency input, a bi-directional mixer (120) and a filter impedance (130) series-coupled across at least part of the LC circuit (110), and another mixer (420) coupled to at least some portion of the LC circuit. Other circuits, processes, receivers, transmitters and transceivers are disclosed.
Abstract:
Low noise amplifier circuit. The low noise amplifier circuit includes an amplifier that amplifies an input to provide an output. The amplifier is coupled to an input terminal. The circuit also includes a device in a cascode connection with the amplifier. The circuit further includes a tuning circuit coupled to the device to phase shift the output. Further, the circuit includes a feedback circuit that is responsive to a phase-shifted output to enhance gain of the amplifier. The feedback circuit is coupled to the tuning circuit and the amplifier.
Abstract:
A low-power receiver front-end includes a transconductance amplifier that produces a single-ended current signal in response to a single-ended voltage signal. An output of the transconductance amplifier is provided to an LC tuned circuit. At resonance, the LC tuned circuit generates a differential current signal in response to the single-ended current signal. Single-ended current signals corresponding to the resonant frequency of the LC tuned circuit are converted into differential signals. Further, the LC tuned circuit amplifies the differential current signals by an associated quality factor. Further, a mixer is coupled to an output of the LC tuned circuit. The mixer generates IF signals in response to the differential current signals.
Abstract:
An amplifier includes a first pair of transistors (the first pair) that defines a first output, each transistor of the first pair having a gate coupled to a first input terminal; a second pair of transistors (the second pair) that defines a second output, each transistor of the second pair having a gate coupled to a second input terminal; a first capacitor coupled to the second output terminal and to the gate of a first transistor of the first pair; a second capacitor coupled to the second output terminal and to the gate of a second transistor of the first pair; a third capacitor coupled to the first output terminal and to the gate of a third transistor of the second pair; and a fourth capacitor coupled to the first output terminal and to the gate of a fourth transistor of the second pair.
Abstract:
An amplifier includes a first pair of transistors (the first pair) that defines a first output, each transistor of the first pair having a gate coupled to a first input terminal; a second pair of transistors (the second pair) that defines a second output, each transistor of the second pair having a gate coupled to a second input terminal; a first capacitor coupled to the second output terminal and to the gate of a first transistor of the first pair; a second capacitor coupled to the second output terminal and to the gate of a second transistor of the first pair; a third capacitor coupled to the first output terminal and to the gate of a third transistor of the second pair; and a fourth capacitor coupled to the first output terminal and to the gate of a fourth transistor of the second pair.
Abstract:
A circuit includes an amplifier that defines a positive input terminal, a negative input terminal, a positive output terminal and a negative output terminal. The circuit also includes a first positive feedback path between the positive input terminal and the positive output terminal of the amplifier. Further, the circuit includes a second positive feedback path between the negative input terminal and the negative output terminal of the amplifier. The first positive feedback path and the second positive feedback path compensate the amplifier.
Abstract:
A low-power receiver front-end includes a transconductance amplifier that produces a single-ended current signal in response to a single-ended voltage signal. An output of the transconductance amplifier is provided to an LC tuned circuit. At resonance, the LC tuned circuit generates a differential current signal in response to the single-ended current signal. Single-ended current signals corresponding to the resonant frequency of the LC tuned circuit are converted into differential signals. Further, the LC tuned circuit amplifies the differential current signals by an associated quality factor. Further, a mixer is coupled to an output of the LC tuned circuit. The mixer generates IF signals in response to the differential current signals.
Abstract:
The present disclosure provides immunomodulatory compositions comprising live Caulobacter crescentus (CC). Immunomodulatory compositions of the present disclosure are useful for modulating an immune response in an individual. The present disclosure thus provides methods of modulating an immune response in an individual, involving administering an immunomodulatory composition comprising live CC to the individual.
Abstract:
The present disclosure provides immunomodulatory compositions comprising live Caulobacter crescentus (CC). Immunomodulatory compositions of the present disclosure are useful for modulating an immune response in an individual. The present disclosure thus provides methods of modulating an immune response in an individual, involving administering an immunomodulatory composition comprising live CC to the individual.