Abstract:
High energy density aqueous pseudocapacitors may be achieved by providing such devices with dissimilar transition metal oxide electrodes. The transition metal oxide electrodes are particularly adapted for use as the anode (20) of a pseudocapacitor device (10).
Abstract:
An electrochemical cell includes an electrode (10) having a microporous polymeric substrate (12) upon which is deposited the first and second layers (18 and 22) of an electrochemically material. Disposed between said first and second layers of electrochemically active materials is a current collecting layer adapted to electrically couple the electrode with a battery cell can. Two or more of such electrodes (40 and 60) may be stacked one atop the other in order to affect a positive and negative electrode as used in conventional cylindrical cells.
Abstract:
A rotor blade is for a gas turbine engine having a plurality of rotor blades and a substantially coaxial shroud encompassing the tips of the blades. A ceramic layer is bonded to the blade tip, the ceramic layer consisting of a combination of aluminum oxide and zirconium oxide or at least partially stabilized zirconium oxide. The ceramic layer is formed as a plasma sprayed coating or a high velocity oxy-fuel sprayed coating.
Abstract:
The front face of the nozzle of a plasma spray device has a shallow annular recession therein. The recession is bounded inwardly by an extended portion of the nozzle, outwardly by a ring member and rearwardly by an inner surface. The ring member has therein a plurality of arcuately equally spaced holes directed radially inward toward the inner face, the holes communicating with a source of air. Powder is injected radially into the plasma stream external to the nozzle member proximate the outlet end. The air flow from the holes and entrainment of surrounding atmosphere by the plasma stream drive a toroidal vortex anchored in the recession, the vortex effecting a wiping flow on the nozzle face such as to inhibit powder from depositing on the nozzle face.
Abstract:
A capacitor (14) is disposed in, for example, a ferrite shell (12). A winding (20) is formed around the shell, thereby providing an inductive component. Additional windings may be provided to form a transformer. In combining the two components into a unitary package, a space savings is realized, and assembly efficiency is increased.
Abstract:
A cooling fixture for thermal spraying includes a rotatable tubular member for supporting a tubular substrate such as for an oxygen sensor. A cooling tube extends from the tubular member into an open end of the substrate so as to delimit an annular channel therein. The other end of the substrate is closed. Air is forced through the cooling tube into the substrate and thence out via the annular channel, to cool the substrate during thermal spray coating of the outside surface.
Abstract:
An electrochemical cell is made with two asymmetric electrodes and a solid polymer electrolyte. The anode is made from materials such metal hydrides, metals, metal hydroxides or metal oxides. The cathode is made from metal hydrides, metals, metal hydroxides or metal oxides. A solid polymer electrolyte is in intimate contact with and situated between the anode and the cathode. The solid polymer electrolyte is made from a polymeric binder such as polyethylene oxide, polyvinylalcohol, polyvinyl acetate, polyacrylamide, poly(vinylpyrrolidone), poly(2-vinylpyridine), poly(4-vinylpyridine) and polyethyleneimine. The polymeric binder has H.sub.2 SO.sub.4 or H.sub.3 PO.sub.4 dispersed within it.
Abstract:
An electrochemical cell (10) having a first electrode (20) and second electrode (80) and a separator (40) disposed therebetween further includes a layer of material disposed between at least one of the electrodes and the separator (52). The layer (52) is adapted to reduce the likelihood of cell failure by subduing the dendritic growth of at least one of the electrodes. The layer (52) is a layer of a metal mesh screen and may further be adapted to be used as the current collector for collecting current generated by the cell (10).
Abstract:
An electrochemical capacitor device (10) including an anode (20) and a cathode (30) separated by a separator (40) and surrounded by an electrolyte (50). The anode (20) and cathode (30) is fabricated from a multi-valent, multiple oxidation state material. The material has a high, an intermediate, and a low oxidation state. In an initial condition, both the anode and cathode are in the intermediate oxidation state. During charging, one electrode will be oxidized to the higher states, while the other electrode will be reduced to the lower state. The processes are reversed during discharge.
Abstract:
An electrochemical cell is made with two asymmetric electrodes and a solid polymer electrolyte. The anode is made from materials such metal hydrides, metals, metal hydroxides or metal oxides. The cathode is made from metal hydrides, metals, metal hydroxides or metal oxides. A solid polymer electrolyte is in intimate contact with and situated between the anode and the cathode. The solid polymer electrolyte is made from a polymeric binder such as polyethylene oxide, polyvinylalcohol, polyvinyl acetate, polyacrylamide, poly(vinylpyrrolidone), poly(2-vinylpyridine), poly(4-vinylpyridine) and polyethyleneimine. The polymeric binder has H.sub.2 SO.sub.4 or H3PO4 dispersed within it.