Abstract:
Systems and methods are disclosed that provide for a fuel cell stack assembly including stack end cells that facilitate improved diagnostic and detection capabilities. In certain embodiments, an anode side of a FC stack end cell consistent with embodiments disclosed herein may be configured to have a lower anode gas flow rate than other cells in the FC stack. The cathode side of a FC stack end cell consistent with embodiments disclosed herein may be further configured to have a higher gas flow rate than other cells in the FC stack. Embodiments of the disclosed FC stack end cells may, among other things, allow for detection of adverse conditions and/or events in a FC stack assembly prior to such conditions and/or events negatively affecting other cells in the FC stack.
Abstract:
A method for controlling a pressure drop across the anode side or the cathode side of a fuel cell stack by controlling the intrusion of a cell separator into the flow channels in a feeder region of the stack so as to create a larger pressure volume on a pressure bias side of the stack. The method controls the flow rates of one or both of the cathode and anode reactant gases so as to cause the cell separators in an inlet feeder region and/or an outlet feeder region to move relative to the anode side and the cathode side so as to change a flow volume in the inlet feeder region and/or the outlet feeder region to control the pressure drop.
Abstract:
A system and method for determining the purity level of hydrogen gas fuel provided to an anode side of a fuel cell stack, and then modifying models and algorithms used by the system based on the purity level. The method includes determining whether predetermined criteria have been met that are necessary to obtain an accurate hydrogen gas fuel purity level, and if so, comparing a measured voltage or current of the fuel cell stack to a modeled voltage or current of the fuel cell stack. If the comparison between the measured voltage or current and the modeled voltage or current is greater than a predetermined threshold, then the method adapts a hydrogen gas concentration value to a lower purity level to be used by downstream models.
Abstract:
A flow field plate for a fuel cell includes an electrically conductive substrate at least partially defining a plurality of flow channels. A carbon layer is disposed over the flow field plate. The carbon layer includes graphene, carbon nanotubes, or combinations thereof and has a thickness less than about 10 nanometers. Chemical vapor deposition and atomic layer deposition processes for forming graphene layers on a flow field plate are also described.
Abstract:
A fuel cell flow field plate includes an aluminum substrate plate having a first side and a second side wherein the first side of the aluminum substrate plate defines a plurality of channels for transporting a first fuel cell reactant gas. The flow field plate also includes a first metal interlayer deposited on the first side of the aluminum substrate plate, a second metal interlayer deposited on the second side of the aluminum substrate plate, a first amorphous carbon layer deposited on the first metal interlayer, and a second amorphous carbon layer deposited on the second metal interlayer. The first amorphous carbon layer and second amorphous carbon layer each independently have a density greater than or equal to 1.2 g/cc.
Abstract:
A fuel cell system that includes a component for removing anionic contaminants is provided. The fuel system including a fuel cell stack, a fuel gas feed subsystem in communication with fuel cell anodes in the fuel cell stack, an oxygen-containing gas feed subsystem system in communication with fuel cell cathodes in the fuel cell stack, and an anionic scavenging subsystem in communication with the fuel gas feed subsystem and/or the an oxygen-containing gas feed subsystem.
Abstract:
Systems and methods for improving conditions for anion contaminant removal in a cathode of a PEMFC system are presented. A fuel cell system consistent with certain embodiments may include a cathode compartment having a compressor coupled thereto. The compressor may be configured to receive an input cathode gas via a compressor input and supply the input cathode gas to the cathode compartment via a compressor output. The fuel cell system may further include a cathode gas recirculation value coupled to the cathode compartment configured to receive a cathode exhaust gas output and to selectively provide at least a portion of the cathode exhaust gas output to the compressor input. Consistent with certain embodiments disclosed herein, the compressor may be further configured to supply at least a portion of the cathode exhaust gas output to the cathode compartment via the compressor output.
Abstract:
A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
Abstract:
System and methods for reducing carbon corrosion in a fuel cell system are presented. Particularly, the disclosed systems and methods may be utilized in connection with preventing the formation of a propagating H2-Air interface within the fuel cell system. In certain embodiments, the disclosed systems and methods may utilize an electrochemical pump disposed in a cathode loop of the fuel cell system configured to remove oxygen that intrudes into the fuel cell system. In further embodiments, pumps may be included in an anode and a cathode loop of the fuel cell system that may allow for circulation of certain gases to prevent the formation of an H2-Air front with the system.