Abstract:
A method of forming NFET S/D structures with multiple layers, with consecutive epi-SiP layers being doped at increasing dosages of P and the resulting device are provided. Embodiments include forming multiple epi-Si layers in each S/D cavity of a NFET; and performing in-situ doping of P for each epi-Si layer, wherein consecutive epi-Si layers are doped at increasing dosages of P.
Abstract:
P-type metal-oxide semiconductor field-effect transistors (pMOSFET's), semiconductor devices comprising the pMOSFET's, and methods of forming pMOSFET's are provided. The pMOSFET's include a silicon-germanium (SiGe) film that has a lower interface in contact with a semiconductor substrate and an upper surface, and the SiGe film has a graded boron doping profile where boron content increases upwardly over a majority of the width of boron-doped SiGe film between the lower interface of the SiGe film and the upper surface of the SiGe film. Methods of forming the pMOSFET's include: providing a semiconductor substrate; depositing a SiGe film on the semiconductor substrate, thereby forming a lower interface of the SiGe film in contact with the semiconductor substrate, and an upper surface of the SiGe film; and doping the SiGe film with boron to form a SiGe film having a graded boron doping profile where boron content increases upwardly over a majority of the width of boron-doped SiGe film between the lower interface of the SiGe film and the upper surface of the SiGe film.