Abstract:
An extreme ultraviolet light generation apparatus may include a chamber containing a plasma generation region irradiated by a pulse laser beam from a laser apparatus, a target supply device configured to supply a plurality of targets consecutively to the plasma generation region in the chamber, a target detection unit configured to detect a target outputted from the target supply device, and a laser controller configured to control the laser apparatus; the laser controller generating a light emission trigger instructing a laser device included in the laser apparatus to emit a pulse laser beam, and outputting the generated light emission trigger to the laser apparatus, in accordance with a detection signal from the target detection unit; and the laser controller adjusting generation of the light emission trigger outputted consecutively to the laser apparatus so that a time interval of the light emission trigger is within a predetermined range.
Abstract:
An extreme ultraviolet light generation device may comprise: a chamber provided with a through-hole; an introduction optical system configured to introduce the pulse laser beam into a first predetermined region inside the chamber through the through-hole; a target supply device configured to output the target toward the first predetermined region; a light source configured to irradiate a second predetermined region with light whose optical path in the second predetermined region has a transverse section that is longer along a direction perpendicular to a direction of movement of the target than along the direction of movement of the target, the second predetermined region including part of a trajectory of the target between the target supply device and the first predetermined region; and an optical sensor configured to detect light incident on the optical sensor from the second predetermined region to detect the target passing through the second predetermined region.
Abstract:
An extreme ultraviolet light generation apparatus may include a chamber containing a plasma generation region irradiated by a pulse laser beam from a laser apparatus, a target supply device configured to supply a plurality of targets consecutively to the plasma generation region in the chamber, a target detection unit configured to detect a target outputted from the target supply device, and a laser controller configured to control the laser apparatus; the laser controller generating a light emission trigger instructing a laser device included in the laser apparatus to emit a pulse laser beam, and outputting the generated light emission trigger to the laser apparatus, in accordance with a detection signal from the target detection unit; and the laser controller adjusting generation of the light emission trigger outputted consecutively to the laser apparatus so that a time interval of the light emission trigger is within a predetermined range.
Abstract:
In an extreme ultraviolet light generation apparatus, a target detection section may include a light source, a transfer optical system, an image sensor configured to output image data of an image that has been formed by irradiating a target outputted from a target supply device with light outputted from the light source on a light-receiving unit of the image sensor by the transfer optical system, and a processing unit, connected to the image sensor, configured to receive the image data, obtain a first optical intensity distribution along a first line that intersects with a trajectory of the target and a second optical intensity distribution along a second line that intersects with the trajectory, calculate a center of gravity position in the first optical intensity distribution and a center of gravity position in the second optical intensity distribution, and calculate an actual path of the target based on the calculated positions.
Abstract:
A temperature controller for a gas laser which controls temperatures of a plurality of temperature-controlled apparatuses including a first temperature-controlled portion requiring a high-precision temperature-control and a second temperature-controlled portion requiring a low-precision temperature-control as compared with the first temperature-controlled portion and allowing a temperature-control with a low or high temperature as compared with the first temperature-controlled portion, comprises a first temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each first temperature-controlled portion, a second temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each second temperature-controlled portion, a first piping system connecting the first temperature control portion and each first temperature-controlled portion in parallel, and a second piping system connecting the second temperature control portion and each second temperature-controlled portion in parallel.
Abstract:
A temperature controller for a gas laser which controls temperatures of a plurality of temperature-controlled apparatuses including a first temperature-controlled portion requiring a high-precision temperature-control and a second temperature-controlled portion requiring a low-precision temperature-control as compared with the first temperature-controlled portion and allowing a temperature-control with a low or high temperature as compared with the first temperature-controlled portion, comprises a first temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each first temperature-controlled portion, a second temperature control portion generating a cooling agent or a heating agent for adjusting a temperature of each second temperature-controlled portion, a first piping system connecting the first temperature control portion and each first temperature-controlled portion in parallel, and a second piping system connecting the second temperature control portion and each second temperature-controlled portion in parallel.