Abstract:
An apparatus for inspecting a turbine blade tip shroud includes a frame comprising a top surface and a bottom surface that is alignable with the turbine blade tip shroud, and, at least one z-notch inspection slot that passes through the frame from the top surface to the bottom surface and is positioned to align with at least one z-notch of the turbine blade tip shroud when the frame is aligned on the turbine blade tip shroud. The apparatus further includes a removable z-notch inspection insert comprising a cross-sectional profile substantially matching the at least one z-notch inspection slot and comprising a z-notch guide face that faces the z-notch of the turbine blade tip shroud when the removable z-notch inspection insert is passed through the z-notch inspection slot
Abstract:
A method for forming a pattern in an abradable coating includes the step of machining a groove in the abradable coating with a machining tool. The machining tool is configured to machine a top surface, a side surface and a bottom surface of the groove simultaneously. A repeating step repeats the machining step until a desired number of grooves is obtained in the abradable coating.
Abstract:
A method of replacing a wind turbine blade includes suspending the wind turbine blade from support hub of a wind turbine, connecting one or more cable climbing members between the support hub and the wind turbine blade, and lowering the one or more cable climbing members and the wind turbine blade from the support hub.
Abstract:
A repair method is provided and includes deriving, from a model of a component, drilling vectors respectively associated with fluid flow passages of the component, obtaining location data of each of the fluid flow passages at least partially from a source other than the model and relying upon the derived drilling vectors and the obtained location data of each of the fluid flow passages to position a tool configured to modify each of the fluid flow passages.
Abstract:
An apparatus for inspecting a turbine blade tip shroud includes a frame comprising a top surface and a bottom surface that is alignable with the turbine blade tip shroud, and, at least one z-notch inspection slot that passes through the frame from the top surface to the bottom surface and is positioned to align with at least one z-notch of the turbine blade tip shroud when the frame is aligned on the turbine blade tip shroud. The apparatus further includes a removable z-notch inspection insert comprising a cross-sectional profile substantially matching the at least one z-notch inspection slot and comprising a z-notch guide face that faces the z-notch of the turbine blade tip shroud when the removable z-notch inspection insert is passed through the z-notch inspection slot
Abstract:
A modification process and modified article are disclosed. The modification process includes locating an area in an article, removing the area by machining to form a machined region, inserting a modification material into the machined region, securing the modification material to the article, machining the modification material flush with a geometry of the article, and applying a coating over at least a portion of the article. Another modification process includes locating an area under a suction side leading edge tip shroud fillet of an airfoil, removing the area by machining to form a hole, inserting a modification material having improved material properties as compared to an original base material into the hole, securing the modification material in place, machining the modification material and the airfoil to form a new fillet contour, and applying a coating over at least a portion of the airfoil. Also disclosed is the modified article.
Abstract:
A system for use in removing a multi-layer coating from a substrate is provided. The multi-layer coating includes a first coating applied to the substrate and a second coating applied over the first coating. The first coating is formed from a first material and the second coating is formed from a second material different from the first material. The system includes a grinding mechanism configured to remove the multi-layer coating from the substrate, and a controller coupled in communication with the grinding mechanism. The controller is configured to position the grinding mechanism against the multi-layer coating, initiate a first removal mode that directs the grinding mechanism to traverse across the substrate, monitor a variable operating parameter of the grinding mechanism during the first removal mode, and evaluate a value of the variable operating parameter against a predetermined threshold to determine whether the second coating has been removed from the substrate.
Abstract:
A system for use in removing a multi-layer coating from a substrate is provided. The multi-layer coating includes a first coating applied to the substrate and a second coating applied over the first coating. The first coating is formed from a first material and the second coating is formed from a second material different from the first material. The system includes a grinding mechanism configured to remove the multi-layer coating from the substrate, and a controller coupled in communication with the grinding mechanism. The controller is configured to position the grinding mechanism against the multi-layer coating, initiate a first removal mode that directs the grinding mechanism to traverse across the substrate, monitor a variable operating parameter of the grinding mechanism during the first removal mode, and evaluate a value of the variable operating parameter against a predetermined threshold to determine whether the second coating has been removed from the substrate.
Abstract:
A method of replacing a wind turbine blade includes suspending the wind turbine blade from support hub of a wind turbine, connecting one or more cable climbing members between the support hub and the wind turbine blade, and lowering the one or more cable climbing members and the wind turbine blade from the support hub.
Abstract:
Methods of treating a target surface of an article having one or more passageways includes fluidly connecting a pressure masker including pressurized masking fluid to a first side of at least one passageway, passing the pressurized masking fluid through the at least one passageway from the first side to a second side having the target surface, and treating the target surface of the article using a surface treatment system that disposes a surface treating material on the target surface, wherein the pressurized masking fluid passing through the at least one passageway prevents the surface treating material from permanently altering a cross sectional area of the at least one passageway.