Abstract:
Disclosed is a quantum key distribution system using an RFI (reference frame independent) QKD (quantum key distribution) protocol, which includes a first signal processing circuit that generates transmission basis information and transmission bit information, a quantum channel transmitter that generates a single photon or coherent light, and modulates the single photon or the coherent light based on the transmission basis information and the transmission bit information to generate a quantum signal, a quantum channel receiver that receives the quantum signal through a quantum channel and detects reception bit information from the quantum signal based on reception basis information, and a second signal processing circuit that generates the reception basis information, transmits the reception basis information to the first signal processing circuit through a public channel, and receives the transmission basis information from the first signal processing circuit through the public channel.
Abstract:
Provided is a waveguide photodetector including a semiconductor substrate, a first optical waveguide and a second optical waveguide, which are sequentially laminated on the semiconductor substrate, in which each of the first optical waveguide and the second optical waveguide includes a first portion and a second portion, and the first portion extends from the second portion in a first direction parallel to a top surface of the semiconductor substrate, a refractive index matching layer disposed on the second portion of the second optical waveguide, a clad layer disposed on the refractive index matching layer, and an absorber disposed between the refractive index matching layer and the clad layer. Here, the second optical waveguide has a first conductive-type, the clad layer has a second conductive-type opposite to the first conductive-type, and the refractive index matching layer includes a first semiconductor layer that is an intrinsic semiconductor layer.
Abstract:
Provided is an apparatus and method for measuring IQ imbalance, and in particular, is an apparatus and method for measuring IQ imbalance for an optical receiver. The apparatus for measuring IQ imbalance for an optical receiver includes a light generating unit generating optical and reference signals to provide the optical and reference signals to an optical receiver, a graph creating unit creating a Lissajous figure by using an in-phase (I) signal and a quadrature-phase (Q) signal output from the optical receiver in response to the optical and reference signals, and a calculating unit calculating IQ imbalance for the optical receiver with reference to the Lissajous figure.
Abstract:
Provided is a polarization decomposition device. The polarization decomposition device includes a polarization beam splitter configured to split an optical signal into a first polarized light having a first polarization direction and a second polarized light having a second polarization direction different from the first polarized light, a phase shifter configured to delay a phase of the first polarized light, a polarization rotator configured to rotate the second polarized light so that the polarization direction of the second polarized light is changed, and an interference beam splitter configured to allow the first polarized light in which the phase is delayed and the second polarized light in which the polarization direction is rotated to interfere with each other and split them into a third polarized light and a fourth polarized light.
Abstract:
An apparatus for measuring performance of a coherent optical receiver includes a beam splitter splitting light into first and second paths, a first optical modulator modulating the first path light, a variable optical attenuator controlling an optical power of the first optical modulator, a first polarization controller transmitting a signal controlling polarization of an output of the variable optical attenuator to the coherent optical receiver, a second optical modulator modulating the second path light, a variable optical delay line delaying time of an output of the second optical modulator, a second polarization controller transmitting a signal controlling polarization of an output of the variable optical delay line to the coherent optical receiver, a network analyzer measuring performance of the coherent optical receiver and controlling the optical modulators, and a controller transmitting a control signal to the optical modulators.
Abstract:
Disclosed is a blend prepared by mixing a prepolymer and a vinyl monomer, wherein the prepolymer is prepared by a condensation reaction between a first compound represented by the formula Ar—H, where Ar comprises (a) a crosslinkable moiety at one end, (b) a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and (c) one or two repeating units selected from the group consisting of: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound consisting of an aromatic moiety. Additionally disclosed is a polymer sheet that is a crosslinked product composed of the blend.
Abstract:
An optical waveguide for optical interconnection including a polymer sheet comprising a crosslinked product of a prepolymer, the prepolymer prepared by condensation reaction between a first compound represented by the formula Ar—H, where Ar comprises (a) a crosslinkable moiety at one end, (b) a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and (c) one or two repeating units selected from the group consisting of: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound consisting of an aromatic moiety.
Abstract translation:一种用于光学互连的光波导,其包括聚合物片,其包含预聚物的交联产物,所述预聚物通过由式Ar-H表示的第一化合物之间的缩合反应制备,其中Ar包含(a)一端的可交联部分, b)选自-O - , - S - , - COO - , - CO - , - SO 2 - , - SO 2 - 和-NH-的部分,和(c)一或两个选自 由以下组成:A为碳或氮,X为氢或卤素; 和由芳族部分组成的第二化合物。
Abstract:
An optical alignment device according to an embodiment of the inventive concept includes an optical alignment plate having a first hole and at least one second hole, in which the first hole and the second hole pass through the optical alignment plate, and an optical detection element disposed on the optical alignment plate. Here, the optical detection element includes a substrate having a first surface and a second surface, which face each other, a lens disposed on the first surface, and an optical sensor disposed on the second surface, and the optical detection element vertically overlaps the first hole and the second hole. The lens is exposed to the outside by the first hole, and the second hole is connected with a vacuum suction unit to fix the optical detection element to the optical alignment plate.
Abstract:
Disclosed is a polarized light generating device based on an optical waveguide, which includes first to fourth input optical waveguides, respectively, for receiving input light from an outside, first to fifth optical splitters configured to receive at least one light and output the received at least one light as at least one light, and an optical converter configured to receive at least one light from the fifth optical splitter and convert the received light to generate polarized light. The polarized light generating device receives the input light through one of the first to fourth input optical waveguides, and generates a first polarized light, a second polarized light, a third polarized light, and a fourth polarized light. The first to fourth polarized lights belong to elements of two arbitrary two-dimensional mutually unbiased basis sets.
Abstract:
Disclosed are a quantum information transmitter, a quantum communication system including the same, and an operating method of the quantum information transmitter. The quantum information transmitter includes a light source driver, a light source, and a light modulator. The light source driver generates a first light source driving signal having a first level and a second light source driving signal having a second level. The light source generates a first light signal having a first average number of photons in response to the first light source driving signal, and generates a second light signal having a second average number of photons in response to the second light source driving signal. The optical modulator modulates the first light signal to generate a target signal, and modulates the second light signal to generate a decoy signal.