Abstract:
A random access method in a mobile communication system, the random access method for supporting random access with a cell size of about 100 kilometers (km) or more and a power limited terminal and a preamble structure thereof are provided. While a conventional long term evolution (LTE) random access preamble sequence is reused, a difference in a round-trip delay time between terminals in a large cell area may be compensated. Additionally, since higher power transmission is achieved per bandwidth, a higher link margin may be secured. Also, compatibility with resource scheduling of the conventional LTE may be maintained. Random access may be supported in a large cell, and a preamble structure of a satellite mobile communication may be implemented based on terrestrial LTE.
Abstract:
Disclosed are a method and an apparatus for determining displacement information of a target area by using information that is present in an image frame. The method of determining displacement information according to an embodiment of the present disclosure may include: setting a target area in which an object that displacement information determination thereof is required is positioned within a target frame; determining a tracking area in a tracking frame based on displacement information of at least one neighboring target area that is positioned around the target area; and determining a matching area that matches with the target area in the tracking area and determining the displacement information of the target area.
Abstract:
Provided is a power control and link adaptation method for compensating for a long round trip delay time and slow channel fading in a long term evolution (LTE)-based mobile communication system having a long round trip delay time, similar to a satellite mobile system, the method that may compensate for the long round trip delay time of the satellite mobile system in which a distance between a base station and a terminal is relatively long, when compared to a terrestrial LTE system, support a modulation and coding scheme (MCS) level requested by a terminal, by predicting a channel after the round trip delay time elapses, maintain compatibility within an existing LTE frame, by generating a transmit power control (TPC) instruction for an uplink closed-loop power control, on a frame by frame basis, and compensate for slow channel fading of the satellite mobile system.
Abstract:
Provided is a system for detecting an accident location, including: a navigation apparatus to extract identification information of a preinstalled apparatus, first distance information between the apparatus and at least one base station, and second distance information between the apparatus and a geostationary satellite, when an impact is applied to the apparatus; and an apparatus control center to compute location information of the navigation apparatus based on the identification information, the first distance information, and the second distance information, wherein the at least one base station receives the first distance information from the navigation apparatus and transmits the first distance information to the apparatus control center, and the geostationary satellite receives the second distance information from the navigation apparatus and transmits the second distance information to the apparatus control center.
Abstract:
A wireless power charging apparatus and method are provided, which recognizes location information of at least one wireless power receiving apparatus; selects at least one of at least one wireless power transmitter that supplies power to the at least one wireless power receiving apparatus based on the location information; and supplies power to the at least one wireless power receiving apparatus through the at least one selected wireless power transmitter.
Abstract:
Provided is a communication method for downlink transmission with a low peak to average power ratio (PAPR) and compatibility with long-term evolution (LTE)-based downlink transmission in an LTE-based mobile communication system in which the performance degradation may occur due to a high PAPR in multi-carrier transmission caused by non-linearity of a power amplifier in a base station including a satellite, to have the effects of supporting a terminal that reuses an existing terrestrial LTE chipset and a terminal that enables downlink reception with a low PAPR with no collision between the terminals, and of implementing an integrated satellite/terrestrial mobile communication system with a minimum change of an existing mobile communication system to ensure economic efficiency.
Abstract:
A method of randomizing a size of a packet is provided. A randomization method may include recognizing a maximum segment size (MSS) defined for transmission and reception of a packet with a reception terminal, and randomizing a size of the packet to be less than the MSS.
Abstract:
A random access method in a mobile communication system, the random access method for supporting random access with a cell size of about 100 kilometers (km) or more and a power limited terminal, and a preamble structure thereof are provided. While a conventional long term evolution (LTE) random access preamble sequence is reused, a difference in a round-trip delay time between terminals in a large cell area may be compensated. Additionally, since higher power transmission is achieved per bandwidth, a higher link margin may be secured. Also, compatibility with resource scheduling of the conventional LTE may be maintained. Random access may be supported in a large cell, and a preamble structure of a satellite mobile communication may be implemented based on terrestrial LTE.
Abstract:
Provided is a communication method for downlink transmission with a low peak to average power ratio (PAPR) and compatibility with long-term evolution (LTE)-based downlink transmission in an LTE-based mobile communication system in which the performance degradation may occur due to a high PAPR in multi-carrier transmission caused by non-linearity of a power amplifier in a base station including a satellite, to have the effects of supporting a terminal that reuses an existing terrestrial LTE chipset and a terminal that enables downlink reception with a low PAPR with no collision between the terminals, and of implementing an integrated satellite/terrestrial mobile communication system with a minimum change of an existing mobile communication system to ensure economic efficiency.
Abstract:
Provided is a power control and link adaptation method for compensating for a long round trip delay time and slow channel fading in a long term evolution (LTE)-based mobile communication system having a long round trip delay time, similar to a satellite mobile system, the method that may compensate for the long round trip delay time of the satellite mobile system in which a distance between a base station and a terminal is relatively long, when compared to a terrestrial LTE system, support a modulation and coding scheme (MCS) level requested by a terminal, by predicting a channel after the round trip delay time elapses, maintain compatibility within an existing LTE frame, by generating a transmit power control (TPC) instruction for an uplink closed-loop power control, on a frame by frame basis, and compensate for slow channel fading of the satellite mobile system.