Abstract:
A method and apparatus for feeding solid material into a pressurized combustion or gasification plant in stages. The feed apparatus (10) is provided with an inlet (18), sluice chamber (30), and outlet (20). In a loading stage, solid material is conveyed through the inlet into the sluice chamber. The loaded sluice chamber is transferred to an unloading stage. During the transfer stage, the inlet (18) is closed. During the unloading stage, solid material is conveyed through the outlet (20) into a pressurized space (26). The volume of the sluice chamber (30) is adjustable so that the volume is enlarged during the loading stage and reduced during the unloading stage. The volume is adjusted e.g. by a piston (38).
Abstract:
A method of operating a fluidized bed reactor system for reacting fuel. The method includes introducing solid material particles, fluidization medium and fuel into a reactor chamber to provide a fluidized bed therewithin, reacting the fuel material within the fluidized bed to produce exhaust gas and discharging the exhaust gas from a reactor chamber outlet, introducing the exhaust gas into a particle separator and separating solid particles from the gas in the particle separator, discharging from the particle separator gas through a gas outlet and a first flow of separated solid particles through a solid particle outlet, and cooling, in a gas cooler, the gas discharged from the separator. A second flow of solid particles is branched off from the first flow of solid particles, before or after discharging the first flow of solid particles from the particle separator. The second flow of solid particles is introduced into the gas discharge from the separator at least before the cooling step, so that the solid particles mechanically dislodge deposits from, and thereby clean, the cooling surfaces in the gas cooler.
Abstract:
A method and apparatus for drying particulate material such as bark by forming a circulating bed of other material to be dried, which bed, being guided by wires, moves on an endless web around two wire turning rolls. Material to be dried is continuously fed onto the bed and dried material is continuously discharged from the innermost layers of the bed, such that the thickness of the bed remains constant. The material to be dried is discharged by means of a dosing cell roll, which is disposed in the opening between the horizontal section of the first wire loop and the horizontal section of the second wire loop.
Abstract:
A method of and an apparatus for drying solid materials and material mixtures in a dryer, comprising a drying space, which is divided by wall elements into drying passages in such a way that each drying passage is limited into two wall elements. Material to be dried is supplied to the drying passages through the upper part thereof. Drying gas is supplied to the drying passages through a first wall element limiting them and moist drying gas is led out of the drying passage to a second wall element limiting them. The dried material is discharged from the drying passages through the lower part thereof. Adjacent wall elements are moved relative to each other in connection with the emptying of the drying passages.
Abstract:
In a fluidized bed reactor system having a gas cooler, with cooling surfaces, downstream of a first cyclone separator, the cooling surfaces are cleaned by introducing sufficient concentration of bed particles into the gas during, or just prior to, cooling, so that the particles mechanically dislodge deposits from, and thereby clean, the cooling surfaces. The particles are then removed downstream of the cooler by a second separator, and the bed particles separated by the second separator may be returned to the fluidized bed reactor at or just before the cooler to again be used to effect cooling. Cleaning may be practiced in spaced time intervals only (e.g. periodically or intermittently), or continuously. Where practiced intermittently the efficiency of operation of the first separator may be diminished by introducing a fluid stream, or a solid object, into the vortex flow within the first separator, so that a sufficient number and size of particles pass through the first separator so as to effect cooler cleaning.
Abstract:
An arrangement for gasifying solid fuel includes a gasification reactor for producing further oxidizable product gas from solid fuel and a gas treatment reactor arranged in a flow direction of the product gas in gas flow connection with the gasification reactor. The gas treatment reactor includes a supply for supplying oxygenous gas to the gas treatment reactor for partial oxidization of product gas and for thermal cracking thereof. A radiation heat exchange cooler for cooling the product gas is arranged in connection with the gas treatment reactor to solidify melt components in the product gas. A discharge connection is arranged in the lower portion of the radiation heat exchange cooler for removing solidified melt components from the radiation heat exchange cooler. A method of gasifying solid fuel in a gasification reactor is also presented.
Abstract:
An arrangement for gasifying solid fuel includes a gasification reactor for producing further oxidizable product gas from solid fuel and a gas treatment reactor arranged in a flow direction of the product gas in gas flow connection with the gasification reactor. The gas treatment reactor includes a supply for supplying oxygenous gas to the gas treatment reactor for partial oxidization of product gas and for thermal cracking thereof A radiation heat exchange cooler for cooling the product gas is arranged in connection with the gas treatment reactor to solidify melt components in the product gas. A discharge connection is arranged in the lower portion of the radiation heat exchange cooler for removing solidified melt components from the radiation heat exchange cooler. A method of gasifying solid fuel in a gasification reactor is also presented.