Abstract:
According to an aspect of the present disclosure, there is provided a method of controlling a power amplifier in a low-orbit satellite network, the method comprising: communicating, by a terminal, with a satellite; setting an initial applied voltage and frequency; receiving orbit information from the satellite; and updating the initial applied voltage according to the orbit information and network environment.
Abstract:
An ultra-low power data transmission method and apparatus are disclosed. An ultra-low power data transmission method to be performed by a user terminal of an ultra-low power data transmission system includes performing channel coding on a payload included in a transmission packet; interleaving a payload obtained through the channel coding, spreading the interleaved payload using a gold code and an orthogonal variable spreading factor (OVSF), combining a synchronization header spread using the gold code and the OVSF with the spread payload, and modulating a transmission packet in which the payload and the synchronization header are combined.
Abstract:
Disclosed is a communication method performed between a satellite and a ground station and apparatuses performing the communication method. The communication method includes transmitting a plurality of frames based on a beam allocation time schedule (BATS) between a satellite and a ground station, and synchronizing the BATS based on a reception time and a detection time of one or more frames among the plurality of frames to be received through a beam open window (BOW) allocated to the ground station.
Abstract:
An apparatus for generating a network clock reference (NCR) packet for acquiring network synchronization between satellite communication devices in two-way satellite communication system, the apparatus including a clock reference determiner configured to determine an NCR based on a trigger signal with respect to a start of a first frame, a synchronization compensator configured to determine a synchronization compensation value by reflecting frame variable length information from the first frame to a second frame into which an NCR packet is to be inserted, and a packet generator configured to generate the NCR packet by combining the NCR and the synchronization compensation value, is provided.
Abstract:
A method according to an embodiment of the present invention corresponds to a method for transmitting, by a gateway, a synchronization signal block (SSB) through a plurality of satellites, and may comprise the steps of: determining satellite identification SSBs for identifying a plurality of satellites, respectively; determining beam identification SSBs for identifying beams usable for the plurality of satellites, respectively; and controlling the satellite identification SSBs and the beam identification SSBs to be transmitted to the plurality of satellites, respectively, through a predetermined resource, wherein the satellite identification SSBs and each of the beam identification SSBs have different SSB indices from each other.
Abstract:
An operation method of an IoT terminal performing communications with a satellite may comprise: receiving a first signal from the satellite; determining a number of symbols constituting a preamble based on the first signal; generating a first frame including a preamble generated according to the determined number of symbols, and transmitting the generated first frame to the satellite; and generating a second frame including a preamble generated according to the determined number of symbols when a response signal to the first frame is received from the satellite, and transmitting the generated second frame to the satellite.
Abstract:
The present invention relates to a method for transmitting a synchronization signal block (SSB) through a plurality of satellites from a base station that can connect to a plurality of gateways, wherein the method may comprise the steps of: controlling transmission of first SSBs corresponding to the number of beams of each satellite through respective transmission beams in a first SSB cycle; determining a transmission beam of each of the satellites on the basis of a first measurement report for the respective beams received from a terminal; and controlling transmission of second SSBs for determining one combination including two or more gateways among the plurality of gateways in a second SSB cycle.
Abstract:
A transmission device in a satellite IoT system may comprise: a CRC value generator that receives first data and generates and outputs a payload CRC value; a forward error correction encoder that receives second data consisting of the first data and the payload CRC value from the CRC value generator, and performs forward error correction coding on the second data; an interleaver that receives third data consisting of the forward error correction coded first data and the payload CRC value from the forward error correction encoder, and outputs interleaved payload blocks by performing cyclic shifts on the forward error correction coded first data based on offsets; and a frequency hopping unit that receives the interleaved payload blocks from the interleaver, and generates and transmits payload blocks frequency-hopped according to a hopping sequence.
Abstract:
Disclosed is a network synchronization apparatus and method of a time division multiple access (TDMA)-based mesh network satellite communication system, the network synchronization method of a terminal in a satellite communication system including receiving timing error information from a central station, generating a mesh superframe start time (SST′) by reversing a sign of the timing error information, and receiving traffic information transmitted by a transmission terminal using the mesh SST′.
Abstract:
Provided is a system and method for synchronization between digital-to-analog converters (DAC) for high speed signal processing. A synchronization method of a multi-DAC apparatus may include: inputting a clock to a multiplexer (MUX) DAC; dividing the clock into a first clock and a second clock; transferring a phase difference between the first clock and the second clock to a D flip-flop; and synchronizing the first clock and the second clock by processing the phase difference.