Abstract:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
Abstract:
A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate.
Abstract:
A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate.
Abstract:
A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate.