Abstract:
A cold crucible system and method for melting and crystallizing non-metallic inorganic compounds having a crucible, the side and the bottom of which are formed of metal pipes through which a cooling medium flows and independently excitable induction coils surrounding the side wall and the bottom of the crucible for coupling high energy into non-metallic inorganic compound present in said crucible and thus to melt said compound in said crucible, a member formed of an electrically conductive material and inert to any of said melt present in said crucible positioned at a distance above the bottom of the crucible and a container, opened at the top, lowered so as to project from the melt formed in the crucible, provided with apertures for the flow of the melt, and so positioned so as to contain up to 25% of the contents of the crucible.
Abstract:
With the fabrication of a substrate material in the form of alkaline-earth gallate single crystals it has become possible to grow monocrystalline barium hexaferrite layers of high quality. These thin barium hexaferrite layers on the alkaline-earth gallate substrates are extremely suited as magnetic devices because of their very high uniaxial anisotropy and their small line width. Such magnetic devices can be used for passive microwave components, e.g. as resonance isolators or filters in the centimeter wavelength range or as components in information storage technology, e.g. in magnetic cylindrical domain devices, especially in the field of very small (submicron) cylindrical domains.