摘要:
A field emission type backlight device with high light efficiency may include a front substrate, a reflective substrate on the front substrate, a rear substrate separated from the front substrate by a predetermined gap, anode electrodes provided with a predetermined gap between them on the rear substrate, a light-emitting layer on the anode electrode, a cathode electrode and a gate electrode spaced apart on the rear substrate between the anode electrodes, and an electron emission source emitting electrons by electric field on the cathode electrode.
摘要:
A field emission type backlight device with high light efficiency may include a front substrate, a reflective substrate on the front substrate, a rear substrate separated from the front substrate by a predetermined gap, anode electrodes provided with a predetermined gap between them on the rear substrate, a light-emitting layer on the anode electrode, a cathode electrode and a gate electrode spaced apart on the rear substrate between the anode electrodes, and an electron emission source emitting electrons by electric field on the cathode electrode.
摘要:
A method of fabricating a field emission array type light emitting unit that includes a rear substrate including a plurality of cathodes and a plurality of carbon nanotube emitters on a front side, a front substrate including a plurality of anodes and a phosphor layer on a rear side, wherein the rear substrate and the front substrate are arranged at a distance apart from each other and a plurality of spacers are arranged between the rear substrate and the front substrate, the plurality of spacers being adapted to maintain constant the distance, the method includes producing a diffusion pattern by wet etching a front side of the front substrate.
摘要:
A method of fabricating a field emission array type light emitting unit that includes a rear substrate including a plurality of cathodes and a plurality of carbon nanotube emitters on a front side, a front substrate including a plurality of anodes and a phosphor layer on a rear side, wherein the rear substrate and the front substrate are arranged at a distance apart from each other and a plurality of spacers are arranged between the rear substrate and the front substrate, the plurality of spacers being adapted to maintain constant the distance, the method includes producing a diffusion pattern by wet etching a front side of the front substrate.
摘要:
A stacked structure may include semiconductors or semiconductor layers grown on an amorphous substrate. A light-emitting device and a solar cell may include the stacked structure including the semiconductors grown on the amorphous substrate. A method of manufacturing the stacked structure, and the light-emitting device and the solar cell including the stacked structure may involve growing a crystalline semiconductor layer on an amorphous substrate.
摘要:
An active optical device is provided. The active optical device includes an optically variable layer having a refractive index which changes according to temperature; and a temperature control unit that controls a temperature of one or more regions of the optically variable layer.
摘要:
A method of fabricating a gallium nitride (GaN) thin layer, by which a high-quality GaN layer may be grown on a large-area substrate using an electrode layer suspended above a substrate, a GaN film structure fabricated using the method, and a semiconductor device including the GaN film structure. The method includes forming a sacrificial layer on a substrate, forming a first buffer layer on the sacrificial layer, forming an electrode layer on the first buffer layer, forming a second buffer layer on the electrode layer, partially etching the sacrificial layer to form at least two support members configured to support the first buffer layer and form at least one air cavity between the substrate and the first buffer layer, and forming a GaN thin layer on the second buffer layer.
摘要:
In a method of forming a pattern of an organic light emitting device (OLED), an organic material is evaporated in a predetermined pattern by using a pre-patterned heating element, and the evaporated organic material is transferred to a substrate where the OLED is formed. The method includes preparing a template having a heating element in a pattern corresponding to a multilayered structure of an OLED including a plurality of functional layers; forming an organic layer on the heating element; drawing a substrate for the OLED near to the heating element of the template; and transferring the organic layer on the heating element to the substrate by evaporating the organic layer using the heating element.
摘要:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features, and a focus gate electrode over a gate electrode, wherein one or more gates of the gate electrode is exposed through a single opening of the focus gate electrode. In the FED, occurrence of arcing is suppressed. Although an arcing occurs in the FED, damage of a cathode and a resistor layer is prevented, so that a higher working voltage can be applied to the anode. Also, due to the micro-tips with nano-sized surface features, the emission current density of the FED increases, so that a high-brightness display can be achieved with the FED. The gate turn-on voltage can be lowered due to the micro-tip as a collection of nano-sized tips, thereby reducing power consumption.
摘要:
Provided is an electronic device, a field effect transistor having the electronic device, and a method of manufacturing the electronic device and the field effect transistor. The electronic device includes: a substrate; a first electrode and a second electrode which are formed in parallel to each other on the substrate, each of the first electrode and the second electrode comprising two electrode pads separated from each other and a heating element that connect the two electrode pads; a catalyst metal layer formed on the heating element of the first electrode; and a carbon nanotube connected to the second electrode by horizontally growing from the catalyst metal layer; wherein the heating elements are separated from the substrate by etching the substrate under the heating elements of the first and the second electrodes.