摘要:
Olefins and alcohols present in Fischer-Tropsch products are converted to primary and secondary alkyl alcohols having at least four carbons through acid catalyzed etherification and hydrolysis reactions. The alcohols are added to a highly isoparaffinic distillate fuel blend, improving the lubricity of the mixture, and forming a distillate fuel with improved lubricity.
摘要:
Olefins and alcohols present in Fischer-Tropsch products are converted to primary and secondary alkyl alcohols having at least four carbons through acid catalyzed etherification and hydrolysis reactions. The alcohols are added to a highly isoparaffinic distillate fuel blend, improving the lubricity of the mixture, and forming a distillate fuel with improved lubricity.
摘要:
Olefins and alcohols present in Fischer-Tropsch light naphthas are converted to dialkyl ethers of the formula: R—O—R′ where R and R′ are each primarily non-tertiary alkyl groups of more than four carbon atoms, via hydration of the olefins to alcohols followed by dehydration of the alcohols. Ethers may also form by direct reaction of olefins and alcohols. The ethers are separated from the remaining paraffins in the naphtha by distillation and added in an amount of 1-25 wt. % to paraffinic mid-distillate fuel components obtained by hydrotreating a Fischer-Tropsch product. The properties of the distillate fuel components such as lubricity and seal swell are improved by the dialkyl ethers. The removal of olefins and alcohols from the naphthas reduces refining and lead to a more salable product.
摘要:
A catalytic hydrodealkylation/reforming process which comprises contacting a heavy hydrocarbon feedstream under catalytic hydrodealkylation/reforming conditions with a composition comprising borosilicate molecular sieves having a pore size greater than about 5.0 Angstroms and a Constraint Index smaller than about 1.0; further containing a hydrogenation/dehydrogenation component; wherein at least a portion of the heavy hydrocarbon feedstream is converted to a product comprising benzene, toluene, xylenes and ethylbenzene.
摘要:
A process for preparing an ethylene-rich composition from a C3-5 paraffinic feedstock is described. The C3-5 paraffinic feedstock is subjected to molecular redistribution via dehydrogenation to form olefins, metathesis of the olefins, and rehydrogenation of the olefins to form paraffins. The product stream includes ethane, which is isolated and sent to an ethane or ethane/propane cracker (or, alternatively, a flexi-cracker, although this is less cost effective) to yield an ethylene-rich composition. The product stream also includes C3-5 paraffins, which can be recycled, and C6+paraffins, which can be used, for example, as solvents. Alternatively, they can be isomerized to form gasoline additives, or can be converted to aromatic compounds by subjecting them to reforming conditions, for example using the AROMAX™ process or platforming or rheniforming conditions.
摘要:
Improved processes and catalysts are described for the conversion of oxygenate-containing olefinic Fischer Tropsch naphtha into aromatics. This involves removal of the oxygenates without complete saturation of the olefins followed by aromatization of the oxygenate-depleted olefinic naphtha preferably over a catalyst that is tolerant to oxygenates.
摘要:
A process for preparing a C4- product stream and a C6+ product stream is disclosed. The process involves contacting a C5 containing paraffinic feedstock with a catalyst that includes a hydrogenation/dehydrogenation catalyst and an olefin metathesis catalyst under conditions which dehydrogenate the paraffins to olefins. The olefins are then metathesized and rehydrogenated to provide a product stream. A C4- fraction and a C6+ fraction can each be isolated from the product stream. The C4- fraction can be used, for example, in an alkylation reaction to provide compounds useful in gasoline compositions. Unconverted C5 paraffins can be recycled. The C6+ fraction can be used, for example, as solvents. Alternatively, they can be isomerized to form gasoline additives, or can be converted to aromatic compounds via reforming, for example, using conventional reforming techniques, preferably using the AROMAX™ process or traditional rheniforming conditions.
摘要:
The method of the invention includes making dimethyinaphthalenes by first contacting, in an alkylation zone, at alkylation conditions, a toluene-containing stream with a pentene-containing stream in the presence of an acid alkylation catalyst. At least a portion of the toluene and pentenes react to form pentyltoluenes. At least a portion of the pentyltoluenes is then contacting in a reforming zone with reforming catalyst, at reforming conditions. At least a portion of the pentyltoluenes is converted to dimethylnaphthalenes.
摘要:
A hydrocarbon conversion process comprises contacting a renewable feedstock under hydroprocessing conditions with supported catalyst comprising at least one metal selected from the group consisting of Group VIII metals, Group VIB metals to form oleochemicals such as fatty alcohols, esters, and normal paraffins. Advantageously, the reaction conditions can be selected to directly convert the renewable feedstock to the desired product(s).
摘要:
A hydrocarbon conversion process comprises contacting a renewable feedstock under hydroprocessing conditions with a bulk catalyst to form oleochemicals such as fatty alcohols, esters, and normal paraffins. Advantageously, the reaction conditions can be selected to directly convert the renewable feedstock to the desired product(s).