Abstract:
An electronically commutated fan system includes an alternating-current-to-direct-current conversion unit, an inverter unit and a control unit. The alternating-current-to-direct-current conversion unit converts an alternating-current input power source into a first direct-current power source. The inverter unit is electrically connected between the alternating-current-to-direct-current conversion unit and a fan. The inverter unit converts the first direct-current power source into an alternating-current output power source and provides the alternating-current output power source to the fan to rotate. The control unit is electrically connected to the alternating-current-to-direct-current conversion unit and the inverter unit. The control unit controls the alternating-current-to-direct-current conversion unit and the inverter unit to adjust a rotational speed of the fan. When the control unit detects a power variation of the alternating-current input power source, the control unit controls the rotational speed of the fan to be maintained within a first error range.
Abstract:
A motor driving system is configured for driving a motor, which is under an inertial rotation status without being driven, to stably rotate from an original speed to a target speed. The motor driving system includes a sensing unit, a control unit and a driving unit. The sensing unit detects a real rotating status of the motor. The control unit is electrically connected with the sensing unit and provides a gradual acceleration command based on the real rotating status. The driving unit is electrically connected with the control unit and drives the motor to accelerate stably to the target speed according to the gradual acceleration command. In addition, a motor operation recovering method cooperated with the motor driving system is also disclosed.
Abstract:
A fan failure backup apparatus includes a first fan module and a second fan module. When a second control unit of the second fan module realizes that the first fan module is failed through a first control unit of the first fan module, and the second control unit realizes that the second fan module is not failed, the second control unit controls the second fan module to additionally enhance a pressure-flow characteristic of a second fan unit of the second fan module.
Abstract:
An electronically commutated motor driving module for driving a motor includes a voltage detector, an electronically commutated motor driver, a current detector, a voltage converter, and a controller. The voltage detector detects supply voltage to generate a voltage detection signal. The electronically commutated motor driver is supplied by the supply voltage to generate, according to an electronically commutated signal, an operating current for driving the motor. The current detector detects the operating current to generate a current detection signal. The voltage converter converts the supply voltage into an internal voltage. The controller is supplied by the internal voltage and generates the electronically commutated signal according to a plurality of control parameters. When the controller determines that a specific event has happened according to the control parameters, the controller stops generating the electronically commutated signal and then stores the control parameters.
Abstract:
A fan motor braking apparatus is provided. The fan motor braking apparatus includes a fan motor, a conversion circuit and a motor driver circuit. The conversion circuit is respectively and electrically connected to the fan motor and the motor driver circuit. The conversion circuit includes bridge structures. After the fan motor starts operating, the motor driver circuit receives at least one fan status signal and determines whether the fan motor braking apparatus enters a braking status or not according to the at least one fan status signal. When the fan motor braking apparatus enters the braking status, the motor driver circuit outputs a braking control signal to the conversion circuit so that the bridge structures of the conversion circuit generate a brake effect on fan motor, wherein the at least one fan status signal includes an external speed-control signal and a transition voltage signal of the fan motor.
Abstract:
A voltage stabilizing module for multi power source input is compatible with multiple input power sources including DC power source and/or AC power source and comprises a plurality of receiving ends, a power source selection unit and a voltage conversion unit. The receiving ends receive the input power sources. The power source selection unit is coupled with the receiving ends to receive the input power sources and sets at least one of the input power sources as a working power source. The voltage conversion unit receives the working power source and keeps the working power source at a working voltage level to act as a voltage signal outputted to a loading.
Abstract:
An electronically commutated motor driving module for driving a motor includes a voltage detector, an electronically commutated motor driver, a current detector, a voltage converter, and a controller. The voltage detector detects supply voltage to generate a voltage detection signal. The electronically commutated motor driver is supplied by the supply voltage to generate, according to an electronically commutated signal, an operating current for driving the motor. The current detector detects the operating current to generate a current detection signal. The voltage converter converts the supply voltage into an internal voltage. The controller is supplied by the internal voltage and generates the electronically commutated signal according to a plurality of control parameters. When the controller determines that a specific event has happened according to the control parameters, the controller stops generating the electronically commutated signal and then stores the control parameters.
Abstract:
A motor driving circuit including a first and a second driving signal output circuit is configured to selectively output a six-step square wave driving signal from the first driving signal output circuit, or a space-vector driving signal from the second driving signal output circuit to an inverter to drive a motor according to whether an operating power exceeds a power threshold. The first driving signal output circuit is configured to generate the six-step square wave driving signal. The second driving signal output circuit is configured to generate the space-vector driving signal.
Abstract:
A motor system with a current sensorless control includes a motor, a drive module, and a motor control module. The motor control module controls the motor to rotate through the drive module. The motor control module includes a command generation module, a command conversion module, and an angle generation module. The command generation module generates speed information and transmits the speed information to the angle generation module, and the command generation module generates a voltage command and transmits the voltage command to the command conversion module. The angle generation module generates an electrical angle. The command conversion module converts the voltage command and the electrical angle into a control signal. The motor control module adjusts a phase of a motor input voltage to meet a phase of a motor input current according to the control signal.
Abstract:
A DC electric fan receiving a first direct current voltage is provided. The DC electric fan includes a motor, a fan blade, a voltage converting device and a motor controller. The motor is directly driven by the first direct current voltage. The fan blade is connected to the motor and rotated by the driving of the motor. The voltage converting device receives and converts the first direct current voltages to a second direct current voltage, wherein the magnitude of the first direct current voltages is larger than the magnitude of the second direct current voltage. The motor controller receives the second direct current voltages to control a rotation direction of the motor, wherein the motor controller is not powered by the first direct current voltage and the first direct current voltage is a fixed direct current voltage.