Abstract:
A power converter including a detection apparatus and method for detecting an islanding condition based on measurements of one or more currents and voltages within the power converter provided to a current regulator to generate a signal that is provided in a positive feedback loop and is indicative of an islanding condition.
Abstract:
Systems (100), power modules (108), and methods for using in controlling a converter (110) coupled between a power generator (104) and an electric grid (102). A power module (108) includes the converter (110) configured to supply the output from the power generator (104) to the electric grid (102) and a controller (112) coupled to the converter (110) and configured to disable the converter (110) in response to a grid fault event, to identify the type or the grid fault event after a first predetermined interval from disabling the converter (110), and to enable switching of the converter (110), when the type of the grid fault event is identified as a low voltage condition.
Abstract:
A power converter including a detection apparatus and method for detecting an islanding condition based on measurements of one or more currents and voltages within the power converter provided to a current regulator to generate a signal that is provided in a positive feedback loop and is indicative of an islanding condition.
Abstract:
A power converter system includes a converter configured to be coupled to a power generation unit for receiving current from the power generation unit. A bus is coupled to the converter, and energy is stored within the bus when the current is conducted through the power converter system. A damping circuit is configured to be coupled to the bus and to the power generation unit, and a control system is coupled to the converter and to the damping circuit. The control system is configured to selectively discharge at least a portion of the energy stored within the bus through the damping circuit when the control system determines that a predetermined condition is met.
Abstract:
A power converter system includes a converter configured to be coupled to a power generation unit for receiving power from the power generation unit, and a bus coupled to the converter, wherein a voltage is generated across the bus when electricity is conducted through the power converter system. The power converter system also includes an inverter coupled to the bus, wherein the inverter is configured to supply power to an electrical distribution network. A control system is coupled to at least one of the converter and the inverter, wherein the control system is configured to adjust an operation of the at least one of the converter and the inverter to reduce the voltage across the bus during at least one of a low voltage event and a high voltage event.
Abstract:
System, power modules, and methods for supplying an output voltage to an electric grid are provided. One example power module includes a switching device configured to supply an output from a power generator to an electric grid, a feedback unit configured to provide a feedback signal indicative of a deviation of a parameter associated with the electric grid, and a controller coupled to the feedback unit and the switching device. The controller is configured to adjust a reactive current of the output in response to at least one grid fault event to ride through the at least one grid fault event, to modify the deviation provided from the feedback unit, to control the switching device based on the modified deviation, and to detect an islanding condition based on the parameter associated with the electric grid.
Abstract:
A power converter system includes a converter configured to be coupled to a power generation unit for receiving current from the power generation unit. A bus is coupled to the converter, and energy is stored within the bus when the current is conducted through the power converter system. A damping circuit is configured to be coupled to the bus and to the power generation unit, and a control system is coupled to the converter and to the damping circuit. The control system is configured to selectively discharge at least a portion of the energy stored within the bus through the damping circuit when the control system determines that a predetermined condition is met.
Abstract:
Systems (100), power modules (108), and methods for using in controlling a converter (110) coupled between a power generator (104) and an electric grid (102). A power module (108) includes the converter (110) configured to supply the output from the power generator (104) to the electric grid (102) and a controller (112) coupled to the converter (110) and configured to disable the converter (110) in response to a grid fault event, to identify the type or the grid fault event after a first predetermined interval from disabling the converter (110), and to enable switching of the converter (110), when the type of the grid fault event is identified as a low voltage condition.
Abstract:
Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.
Abstract:
Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.