Abstract:
An exemplary power conversion system comprises an MPPT unit, a DC bus, a power converter, and a converter controller. The MPPT unit receives a feedback current signal and a feedback voltage signal from a power source and generates an MPPT reference signal based at least in part on the feedback current and voltage signals. The DC bus receives DC power from the power source. The power converter converts the DC power on the DC bus to AC power. The converter controller receives the MPPT reference signal from the MPPT unit and an output power feedback signal measured at an output of the power converter; generates control signals for AC power regulation and maximum power extraction based at least in part on the MPPT reference signal and the output power feedback signal; and sends the control signals to the power converter.
Abstract:
Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.
Abstract:
A power plant for providing alternating current (AC) power to an electrical grid is described. The power plant includes a first power converter couplable to the electrical grid at a first point of interconnection for receiving power from a first power source. The power plant also includes a second power converter couplable to the electrical grid at the first point of interconnection for receiving power from a second power source. The power plant also includes at least one sensor for measuring a voltage level at the first point of interconnection and a central controller for coordinating operation of the first power converter and the second power converter to determine an impedance of the electrical grid.
Abstract:
Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.
Abstract:
An exemplary power conversion system comprises an MPPT unit, a DC bus, a power converter, and a converter controller. The MPPT unit receives a feedback current signal and a feedback voltage signal from a power source and generates an MPPT reference signal based at least in part on the feedback current and voltage signals. The DC bus receives DC power from the power source. The power converter converts the DC power on the DC bus to AC power. The converter controller receives the MPPT reference signal from the MPPT unit and an output power feedback signal measured at an output of the power converter; generates control signals for AC power regulation and maximum power extraction based at least in part on the MPPT reference signal and the output power feedback signal; and sends the control signals to the power converter.
Abstract:
An exemplary power conversion system is disclosed including a DC bus for receiving DC power; a line side converter electrically coupled to the DC bus for converting the DC power to AC power; and a voltage source controller to provide control signals to enable the line side converter to regulate the AC power. The voltage source controller comprises a signal generator to generate the control signals based at least in part on a power command signal and a power feedback signal. The voltage source controller further comprises a current limiter to, during a transient event, limit the control signals based at least in part on an electrical current threshold. The voltage source controller further comprises a voltage limiter to, during the transient event, limit the control signals based at least in part on a DC bus voltage feedback signal and a DC boundary voltage threshold.
Abstract:
An exemplary power conversion system is disclosed including a DC bus for receiving DC power; a line side converter electrically coupled to the DC bus for converting the DC power to AC power; and a voltage source controller to provide control signals to enable the line side converter to regulate the AC power. The voltage source controller comprises a signal generator to generate the control signals based at least in part on a power command signal and a power feedback signal. The voltage source controller further comprises a current limiter to, during a transient event, limit the control signals based at least in part on an electrical current threshold. The voltage source controller further comprises a voltage limiter to, during the transient event, limit the control signals based at least in part on a DC bus voltage feedback signal and a DC boundary voltage threshold.