摘要:
A power delivery system includes at least one conductor having a first end and a second end and a phasor measurement unit (PMU) coupled to the first end of the conductor. The PMU is configured to obtain phasor data at the first end and generate a phasor signal that includes the phasor data. The power delivery system also includes a power generation system coupled to the second end of the conductor and configured to provide power to the conductor. The power generation system includes a power source, a power converter, and a controller. The controller is communicatively coupled to the PMU and is configured to receive the phasor signal and control the power converter based at least partially on the phasor data.
摘要:
Embodiments of the invention relate to a power system for converting direct current (“DC”) power on a DC bus into alternating current (“AC”) power with a regulated voltage output and for feeding the AC power to an electrical system which may include a power utility or an electric grid, for example. A power conversion control system is used for controlling the power conversion and for maintaining the DC bus voltage (“DC voltage”) at a certain level.
摘要:
A power generation system including a photovoltaic (PV) module to generate direct current (DC) power is provided. The system includes a controller to determine a maximum power point for the power generation system and a boost converter for receiving control signals from the controller to boost the power from the PV module to a threshold voltage required to inject sinusoidal currents into the grid. A DC to alternating current (AC) multilevel inverter is provided in the system to supply the power from the PV module to a power grid. The system also includes a bypass circuit to bypass the boost converter when an input voltage of the DC to AC multilevel inverter is higher than or equal to the threshold voltage.
摘要:
A power conversion system includes a photovoltaic source to generate direct current (DC) power; a direct current (DC) to an alternating current (AC) single stage inverter to convert the direct current (DC) power from the photovoltaic source to alternating current (AC) power for delivery to a power grid, and a load balancing unit coupled to the single stage inverter. The power conversion system also includes a controller configured to determine a maximum power point for the power conversion system, regulate an output voltage of the single stage inverter, compute a power balance difference between a power demand from the power grid and an output power of the single stage inverter obtainable at the maximum power point and control in real-time the load balancing unit based on the power balance difference.
摘要:
An optically powered MEMS gate driver includes a photovoltaic converter configured to receive a light signal from a light source and output a DC supply voltage for a MEMS gate driver in response thereto. The MEMS gate driver further includes a DC to DC converter electrically coupled to the photovoltaic converter and configured to output a line level DC voltage in response to the DC supply voltage. An electrical circuit, also included as a portion of the MEMS gate driver is electrically coupled to both the photovoltaic converter and the DC to DC converter is configured to receive the supply voltage and the line level voltage and to output a line level drive signal in response thereto. The optically powered MEMS gate driver is self-contained within a common EMI enclosure thus providing isolation between the gate driver and command signal electronics.
摘要:
A system, in one embodiment, includes a photovoltaic power converter. The photovoltaic power converter includes one or more photovoltaic arrays configured convert solar energy into a DC signal and two or more N-level converters coupled to a common DC bus (N being an integer greater than 2).
摘要:
An electrical switching device is presented. The electrical switching device includes multiple switch sets coupled in series. Each of the switch sets includes multiple switches coupled in parallel. A control circuit is coupled to the multiple switch sets and configured to control opening and closing of the switches. One or more intermediate diodes are coupled between the control circuit and each point between a respective pair of switch sets.
摘要:
A current control device is disclosed. The current control device includes control circuitry integrally arranged with a current path and at least one micro electromechanical system (MEMS) switch disposed in the current path. The current control device further includes a hybrid arcless limiting technology (HALT) circuit connected in parallel with the at least one MEMS switch facilitating arcless opening of the at least one MEMS switch, and a pulse assisted turn on (PATO) circuit connected in parallel with the at least one MEMS switch facilitating arcless closing of the at least one MEMS switch.
摘要:
A power delivery system includes at least one conductor having a first end and a second end and a phasor measurement unit (PMU) coupled to the first end of the conductor. The PMU is configured to obtain phasor data at the first end and generate a phasor signal that includes the phasor data. The power delivery system also includes a power generation system coupled to the second end of the conductor and configured to provide power to the conductor. The power generation system includes a power source, a power converter, and a controller. The controller is communicatively coupled to the PMU and is configured to receive the phasor signal and control the power converter based at least partially on the phasor data.
摘要:
A power inverter system includes a plurality of power inverters such as solar inverters receiving power from at least one energy source. Each power inverter includes algorithmic maximum peak power tracking (MPPT) software or integrated MPPT firmware to calculate its own potential real power. A controller is in electrical communication with selected power inverters that are operating in curtailed modes of operation and commands each selected power inverter to shift its power production duties and to perform MPPT sweeps. Each selected power inverter then calculates its own potential real power capability in response to corresponding MPPT sweep data. The potential real power capability information is received by the controller that transmits the information to a power utility allowing the power utility to more efficiently utilize real and reactive power available by the plurality of power inverters