摘要:
Example embodiments presented herein are directed towards an eNodeB, and method therein, for generating downlink communications in a multiple antenna system. The method comprises transmitting, to a number of user equipments, a plurality of reference signals, where each signal is beamformed in a distinct direction within at least one correlated domain (e.g., elevation and/or azimuth). The eNodeB receives at least one CSI report from a specific user equipment and determines a primary reference signal based on, for example, the at least one CSI report. The eNodeB may thereafter generate downlink communication signals for antenna element(s) and/or subelements of the multiple antenna system. The downlink communication signals are beamformed into a transmitting direction that aligns most closely with a beamforming direction of the at least one primary reference signal, as compared to any other beamforming direction of the reference signals.
摘要:
The invention relates to methods and arrangements in a transmitting node for enabling a receiving node to perform measurements on interference caused by transmissions from at least one transmission point controlled by the transmitting node on receptions at the receiving node. The transmitting and receiving nodes are comprised in a wireless communications system. The transmitting node determines an interference measurement resource, IMR, for the receiving node. The receiving node is expected to measure interference on the IMR. The transmitting node then transmits at least one interfering signal on the IMR. The at least one interfering signal is not expected to be decoded or coherently measured upon by any node served by the transmitting node.
摘要:
Example embodiments presented herein are directed towards an eNodeB, and method therein, for generating downlink communications in a multiple antenna system. The method comprises transmitting, to a number of user equipments, a plurality of reference signals, where each signal is beamformed in a distinct direction within at least one correlated domain (e.g., elevation and/or azimuth). The eNodeB receives at least one CSI report from a specific user equipment and determines a primary reference signal based on, for example, the at least one CSI report. The eNodeB may thereafter generate downlink communication signals for antenna element(s) and/or subelements of the multiple antenna system. The downlink communication signals are beamformed into a transmitting direction that aligns most closely with a beamforming direction of the at least one primary reference signal, as compared to any other beamforming direction of the reference signals.
摘要:
Frequency-selective phase shifts are applied to signals transmitted from multiple transmission points involved in a coordinated (joint) transmission to a given UE. An eNodeB or other network node controlling the joint transmission artificially induces frequency selectivity between signals received by the UE in joint transmission from different transmission points, so as to ensure an even balance between constructive and destructive combination over frequency. By applying frequency-selective phase shifts (e.g., pseudo-random phase shifts) to the different transmission points that perform joint transmission, the signals from the different transmission points are forced to combine at the UE in a non-coherent manner. As a result, uncertainty in how the signals combine is drastically reduced, since it can be expected that the signals will always combine incoherently. The reduced uncertainty translates to reduced back-off offset in the link adaptation, and thus in an increased throughput.
摘要:
The initialization of the CoMP Resource Management Set for a given mobile terminal is based, at least in part, on an estimation of the mobile terminal's geographical location, which can be estimated using network positioning of the mobile terminal. One example method begins with the acquisition (410) by a network node of a geographical position estimate for the mobile terminal of interest. The network node then selects (420) a set of one or more CSI-RS resources for measurement by the mobile terminal, based on the estimated geographical position of the mobile terminal. Finally, the network node configures the mobile terminal to measure the selected CSI-RS resources by sending (430) control information identifying the set to the mobile terminal.
摘要:
The invention relates to methods and arrangements in a transmitting node for enabling a receiving node to perform measurements on interference caused by transmissions from at least one transmission point controlled by the transmitting node on receptions at the receiving node. The transmitting and receiving nodes are comprised in a wireless communications system. The transmitting node determines an interference measurement resource, IMR, for the receiving node. The receiving node is expected to measure interference on the IMR. The transmitting node then transmits at least one interfering signal on the IMR. The at least one interfering signal is not expected to be decoded or coherently measured upon by any node served by the transmitting node.
摘要:
Some example embodiments presented herein are directed towards an eNodeB, and corresponding method therein, for establishing beamforming for downlink communications in a multiple antenna system. The eNodeB may transmit a plurality of reference signals, where each reference signal is beamformed into a distinct direction with in at least one correlated domain (e.g., an elevation and/or azimuth domain). The eNodeB may generate beamformed downlink communications for antenna elements and/or subelements based on received signal quality assessments of the plurality of reference signals. Some example embodiments may be directed towards a user equipment, and corresponding methods therein, for establishing beamforming for downlink communications. The user equipment may receive the plurality of reference signals and provide signal assessments of the reference signals based on measurements performed by the user equipment. The user equipment may transmit the signal quality assessments to the eNodeB and receive beamformed downlink communications based on the signal quality assessments.
摘要:
Some embodiments provide a method in a wireless device for reporting channel state information, CSI, for a CSI process. The CSI process corresponds to a reference signal resource and an interference measurement resource. According to the method, the wireless device obtains an adjustment value associated with the CSI process. The wireless device estimates an effective channel based on one or more reference signals received in the reference signal resource, and applies the adjustment value to the estimated effective channel, thereby obtaining an adjusted effective channel. Furthermore, the wireless device determines channel state information based on the adjusted effective channel, and on interference estimated based on the interference measurement resource. Finally, the channel state information is transmitted to a network node.
摘要:
Some of the example embodiments presented herein are directed towards an eNodeB (401), and corresponding method therein, for providing data transmission in a multiple antenna system. The eNodeB (401) may be configured to receive a plurality of signal quality assessments and a CSI report from a user equipment. Based on the received data the eNodeB (401) may determine a received power difference between the received data. The eNodeB (401) may further determine a beamforming direction for subsequent data transmissions. Based on the power difference, the eNodeB (401) may account for the received power difference in the subsequent data transmissions, thus improving data communications towards the user equipment.
摘要:
Some embodiments provide a method in a wireless device for reporting channel state information, CSI, for a CSI process. The CSI process corresponds to a reference signal resource and an associated interference measurement resource, IMR. According to the method, the wireless device obtains an interference power adjustment value. The wireless device estimates interference and noise based on the IMR, and on the interference power adjustment value. Furthermore, the wireless device determines channel state information based on an estimated effective channel measured based on the reference signal resource, and on the estimated interference and noise. Finally, the wireless device transmits the channel state information to a network node.