Abstract:
A map system is a system for autonomously navigating a vehicle along a road segment and includes at least one processor. The processor acquires at least one image representing the environment of the vehicle from the imaging device, acquires the brightness of the environment of the vehicle, analyzes the image to calculate the position of the landmark with respect to the road on which the vehicle travels, determines the position of the own vehicle based on the position of the landmark calculated from the image and the map information stored in the server, and emits an illumination light in a direction in which a presence of the landmark is estimated when the brightness is equal to or less than a predetermined threshold value.
Abstract:
A vehicle-installation intersection judgement apparatus determines whether a target object such as a pedestrian is located ahead and to one side of the vehicle, and if so, judges whether the object is moving laterally to intersect with the advancement of the vehicle. Successive amounts of lateral displacement of the object are periodically derived, each amount is compared with a displacement threshold, a count is made of the number of times that the displacement threshold is exceeded, and the count is compared with a predetermined count threshold. The judgement concerning the target object is made based upon whether the count threshold is attained.
Abstract:
A lane merging determination apparatus is provided which includes a first generation section that generates a first path, which is a prospective traveling path of an own vehicle, a second generation section that generates a second path corresponding to a traveling path of an adjacent vehicle, which is one of vehicles present ahead of the own vehicle and runs in a lane adjacent to a driving lane of the own vehicle, based on a history of positions of the vehicles, an intersection determination section that determines whether or not the first path and the second path intersect with each other; and a merging determination section that determines that the lanes merge with each other in front of the own vehicle, if the intersection determination section determines that the first path and the second path intersect with each other.
Abstract:
A method for uploading a probe data, including coordinate information of a plurality of features disposed along a road, to a server, includes: acquiring at least one peripheral object data, representing a feature disposed around a vehicle, from a peripheral monitoring sensor mounted on the vehicle; analyzing the peripheral object data and calculate a position of the feature with respect to the road on which the vehicle travels; and generating the probe data including position information of the feature and uploading the probe data to the server. The uploading includes a first mode in which the probe data is uploaded to the server at a predetermined frequency, and a second mode in which the probe data is uploaded at a lower frequency than the first mode.
Abstract:
A road-surface state determination apparatus for a vehicle is provided. The road-surface state determination apparatus includes an acquiring unit and a control unit. The acquiring unit acquires, as a first detection signal, information on a changed pixel of which a luminance value changes based on an absolute displacement of a road-surface state or a relative displacement of the road-surface state relative to a moving vehicle. The control unit determines a type of the road-surface state using the first detection signal.
Abstract:
A system for autonomously driving a vehicle along a road segment includes at least one processor. The processor is configured to: acquire at least one piece of peripheral object data indicating information about an object disposed around the vehicle from a peripheral monitoring sensor; analyze the peripheral object data to calculate a position of the landmark with respect to the road on which the vehicle travels; determine position coordinates of the vehicle based on the position of the landmark calculated from the peripheral object data and the map data; and change a relative position of the vehicle with respect to an obstacle so as to easily detect the landmark by the peripheral monitoring sensor when the obstacle is disposed within a detection range of the peripheral monitoring sensor.
Abstract:
A falling object determination device configured to be mounted on a vehicle is provided. The falling object determination device includes an acquisition unit configured to acquire, as a first detection signal, information indicating displacement of an object near a cargo bed of a nearby vehicle which travels near the own vehicle; and a control unit configured to calculate at least one of a vibration frequency, an amplitude and a size of the object near the cargo bed by using the first detection signal, and performs a determination whether the object near the cargo bed is an object which is likely to fall from the cargo bed or an object which is falling from the cargo bed in accordance with a calculation result.
Abstract:
A recognition apparatus is provided which includes an input section that receives image information from a front camera and a rear camera, and a calculation section that performs a forward recognition process that is a recognition process targeting the image information from the front camera received by the input section and a rearward recognition process that is a recognition process targeting the image information from the rear camera received by the input section. The calculation section includes an acquisition section that acquires first information representing whether an own vehicle is in a state of moving forward or a state of moving rearward and second information representing a traveling condition of the own vehicle, and a process selection section that selects processes to be performed as the forward recognition process and the rearward recognition process, based on the first and second information acquired by the acquisition section.
Abstract:
A lane merging determination apparatus is provided which includes a first generation section that generates a first path, which is a prospective traveling path of an own vehicle, a second generation section that generates a second path corresponding to a traveling path of an adjacent vehicle, which is one of vehicles present ahead of the own vehicle and runs in a lane adjacent to a driving lane of the own vehicle, based on a history of positions of the vehicles, an intersection determination section that determines whether or not the first path and the second path intersect with each other; and a merging determination section that determines that the lanes merge with each other in front of the own vehicle, if the intersection determination section determines that the first path and the second path intersect with each other.
Abstract:
A travelled-route selecting apparatus includes a first route selecting unit to select, from travelled routes of other vehicles generated by a route generating unit, one or more travelled routes. The one or more travelled routes each have a relative distance relative to an own vehicle equal to or lower than a predetermined threshold value. The travelled-route selecting apparatus includes a second route selecting unit to select, from the travelled routes selected by the first route selecting unit, a travelled route corresponding to a selected other vehicle. The selected other vehicle is the closest to the own vehicle among the other vehicles corresponding to the travelled routes selected by the first route selecting unit.