Abstract:
A control system is described for improving continuous dynamical control on the pressure in the outlet or inlet system (3) or both of a machine (1) in order to control the performance of the machine. The system comprises an actuator (4) for varying the pressure in the selected system, a sensor (8) for monitoring the operation of the machine and producing a signal indicative thereof, and control means (5) responsive to the sensor signals for driving the actuator, wherein the control means operates to adjust the machine performance according to predetermined data, to optimise the machine performance. The data may be in a memory (look-up table) or the control means may operate in accordance with an algorithm. A second sensor may be provided to generate a signal indicative of sound produced by one or other or both of the outlet and inlet systems to produce signals to enable the control means simultaneously to reduce noise generated by the machine as well as to improve the performance of the machine by active feedback.
Abstract:
An active vibration control system having at least two input sensors generating first signals representative of a primary vibration field, a plurality of actuators driven by second signals and producing a secondary vibration field, monitoring sensors responsive to both the primary and secondary vibration fields and producing third signals, and a controller having one output waveform generator for each second signal and responsive to the first signals to generate respective second signals so that vibration is reduced in a chosen region excited by both the primary and secondary fields, the controller being adaptive to adjust the waveform generator outputs to maintain the reduced vibration in this region.
Abstract:
A control system actively controls at least one troublesome mode of an unsteady motion phenomenon in turbomachinery in order to enable an increase in the operating range of the turbomachinery. For example, rotor blade flutter or rotating stall may be controlled in a turbocompressor. The control system has a control bandwidth which is at least partly coextensive with the bandwidth of the unsteady motion phenomenon and operates by passing sensor signals related to the unsteady motion phenomenon from a sensor array in the turbomachine to a mode filter which produces a signal or signals which are related to the troublesome mode or modes. The selected mode signals are amplified and phase-shifted by time-variable amounts so as to produce control signals having controlled amplitude and phase relationship to the troublesome mode. Actuators in an actuator array are continuously driven by the control signals and produce physical effects in the turbomachine which act counter to the troublesome mode without exciting others.
Abstract:
A control system actively controls at least one troublesome mode of an unsteady motion phenomenon in turbomachinery in order to enable an increase in the operating range of the turbomachinery. For example, rotor blade flutter or rotating stall may be controlled in a turbocompressor. The control system has a control bandwidth which is at least partly coextensive with the bandwidth of the unsteady motion phenomenon and operates by passing sensor signals related to the unstady motion phenomenon from a sensor array in the turbomachine to a mode filter which produces a signal or signals which are related to the troublesome mode or modes. The selected mode signals are amplified and phase-shifted by time-variable amounts so as to produce control signals having controlled amplitude and phase relationship to the troublesome mode. Actuators in an actuaor array are continuously driven by the control signals and produce physical effects in the turbomachine which act counter to the troublesome mode without exciting others.
Abstract:
A control system actively controls at least one troublesome mode of an unsteady motion phenomenon in turbomachinery in order to enable an increase in the operating range of the turbomachinery. For example, rotor blade flutter or rotating stall may be controlled in a turbocompressor. The control system has a control bandwidth which is at least partly coexstensive with the bandwidth of the unsteady motion phenomenon and operates by passing sensor signals related to the unsteady motion phenomenon from a sensor array in the turbomachine to a mode filter which produces a signal or signals which are related to the troublesome mode or modes. The selected mode signals are amplified and phase-shifted by time-variable amounts so as to produce control signals having controlled amplitude and phase relationship to the troublesome mode. Actuators in an actuator array are continuously driven by the control signals and produce physical effects in the turbomachine which act counter to the troublesome mode without exciting others.
Abstract:
A signal processing system, especially for use in vibration control, wherein noise-free signals inductive of the timing of a primary source and of the timing of at least one interfering secondary source of periodic vibrations are provided as inputs, together with a vibration input signal derived from a sensor sampling the vibrations, and wherein the signals are processed to produce an output representative of interference free vibration of the primary source.
Abstract:
A signal processing system, especially for use in vibration control, wherein noise-free signals inductive of the timing of a primary source and of the timing of at least one interfering secondary source of periodic vibrations are provided as inputs, together with a vibration input signal derived from a sensor sampling the vibrations, and wherein the signals are processed to produce an output representative of interference free vibration of the primary source.
Abstract:
A control system actively controls at least one troublesome mode of an unsteady motion phenomenon in turbomachinery in order to enable an increase in the operating range of the turbomachinery. For example, rotor blade flutter or rotating stall may be controlled in a turbocompressor. The control system has a control bandwidth which is at least partly coextensive with the bandwidth of the unsteady motion phenomenon and operates by passing sensor signals related to the unsteady motion phenomenon from a sensor array in the turbomachine to a mode filter which produces a signal or signals which are related to the troublesome mode or modes. The selected mode signals are amplified and phase-shifted by time-variable amounts so as to produce control signals having controlled amplitude and phase relationship to the troublesome mode. Actuators in an actuator array continuously driven by the control signals and produce physical effects in the turbomachine which act counter to the troublesome mode without exciting others.
Abstract:
An active noise and vibration reduction system for canceling noise in aircraft or other passenger carrying transportation systems which utilizes a series of seat mounted microphones and trim mounted speakers in conjunction with a digital controller with a class-D stage power amplifier and which is synched to the aircraft alternator.
Abstract:
A vehicle braking system comprising a controller responsive to wheel speed signals from at least two wheel speed sensors for sensing skid conditions of at least two wheels and for generating skid control instructions; a plurality of wheel brakes responsive to fluid pressure, hereinafter referred to as brake pressure, supplied thereto; a supply device, comprising a common supply valve, for supplying brake pressure to the brakes from a fluid pressure supply in accordance with a brake operating signal; and a skid controller controlled by the skid control instructions for controlling the brake pressure in a plurality of cycles each of which comprises a pressure reduction phase and a pressure increase phase, and a first comparitor to compare the co-efficient of friction of the lower friction surface with a predetermined threshold, and/or a second comparitor to compare the relative values of the co-efficients of friction of the surfaces with which at least two of the wheels are engaged and a device to operate the skid controller in a select low mode if the comparitors determine that a) the co-efficient of friction of the lower friction surface is above a predetermined absolute level, and/or b) the co-efficients of friction of the surfaces with which at least two of the wheels are engaged differ by less than a predetermined amount, and in a select high mode if the comparitors determine that a) the co-efficient of friction of a lower friction surface is at or below a predetermined absolute level, and/or b) the co-efficients of friction of the surfaces differ by at least the predetermined amount.